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Preface

Several years ago while at the Phillips Laboratory, I was introduced to a nu-
merical technique known as Smoothed Particle Hyrodynamics (SPH). I was intrigued
by its simplicity and yet apparent accuracy. Unfortunately, my duties at the time
kept me from thoroughly exploring the algorithm. So when it was suggested to me
that SPH might make an interesting topic for research, I quickly agreed. Thus, the
topic of analyzing SPH from a mat! . .- atical point of view became the basic theme

for my dissertation.

[ wish to thank committee member D. Kirk Mathews for his tough questions
and pointed advice. His input greatly impioved the quality of this dissertation.
Thanks also to committee member Mike Stoecker for our many discussions and his
numerous edits. Without his help I would have gotten lost at times. To Dr Firooz
Allahdadi, I appreciate the advice and friendship given to me both before and during
this work. He convinced me that I was capable of succeeding. I am indebted to my
faculty advisor, Dr Dennis Quinn. His calm, non-intrusive ways eased the trouble
spots, kept me focused, helped me to find the answers, and allowed me to grow on my
own. Quite simply, through my work with him, I learned how to perform research

and write in a professional manner.

Finally, [ wish to thank my wife, Donna, and son, Ben, for their understanding
and support during those periods when I could not be with them due to this project.
I dedicate this work to my father, who died shortly before this work started; his

analytical mind and strong will helped form and prepare me for this work.

David Allen Fulk
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AFIT/DS/ENC/94-1

Abstract

This dissertation studies the numerical technique known as Smoothed Particle
Hydrodynamics (SPH) from a mathematical point of view. As a framework for the
research, problems from the Hypervelocity Impact (HVI) community were chosen.
The gridless Lagrangian method, SPH, can handle the complicated geomet igh
deformation rates, and material tracking features of HVI problems quite w- i’ he
research starts with a detailed consistency analysis of the method. Higher dimensions
and non-smooth functions are considered in addition to the more standard smooth
one-dimensional case. A stability analysis is then performed. Using a linearizing
technique, an instability is found. Four solutions are proposed to resolve the insta-
bility. Also an initial Total Variation Stability analysis is performed on a simplified
form of SPH. The concepts of consistency and stability are then brought together in
a convergence proof. This proof uses three lemmas derived from the Lax-Wendroff
Theorem in finite differences. The detailed study of the method itself is concluded
with an analysis of the SPH Kernel function, the key element in SPH. Techniques to
compare and evaluate different kernels are proposed. Bell-shaped kernels are shown
to be superior over other shaped kernels and many new kernels are introduced. To
provide a full discretization of the problem, three different time schemes are then
applied to SPH. The Lax-Wendroff and Shu methods are used for the first time with
SPH, while problems with implementations of fhe central time scheme are noted.
In addition, an SPH Lax-Friedrichs type form is developed. This method is used in
proposing the use of and developing flux-limited hybrid methods in SPH to control
shocks. This idea allows the SPH continuity equation to be used for the first time

when solving the classic Riemann shock tube problem.
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A NUMERICAL ANALYSIS OF SMOOTHED PARTICLE
HYDRODYNAMICS

I. INTRODUCTION

This dissertation addresses a numerical technique known as Smoothed Particle
Hydrodynamics (SPH) for solving a class of partial differential equations. In order
to limit the scope of the work, SPH will be studied as it applies to problems of
deformative failure modes of material under high strain rate loading due primarily
to hypervelocity impact (HVI). Although the exact nature of the problem is not
required to perform most of the analysis detailed in this dissertation, it forms a
framework in which the method may be understood, a set of equations to evaluate,

and a user community interested in the applications.

Numerous techniques are available to solve partial differential equations and in
particular the Euler equations. Finite difference and finite element techniques are two
of the more popular general categories of methods because they are well-grounded in
numerical theory and usage. Each has its own advantages and disadvantages when
applied to problems of the type found in HVI, but SPH by its design has some other
advantages over these other techniques. Since SPH is a rather new technique, it has

not received as much theoretical attention as the older methods.
1.1 Advantages of SPH

HVI and related problems are characterized by extremely high deformation
rates. When using a finite element method, these deformations will often cause the
elements to become so elongated that time stepping goes to zero and can even cause
elements to get turned inside out. Standard Eulerian finite difference techniques can

handle the deformation rates much better, but do not have the material tracking
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and interface accuracy desired for complicated geometries. However, the gridless

Lagrangian method, SPH, can handle these sorts of problems quite easily.

1.2 Analysis of SPH

The results of this dissertation are split between two major categories: numer-
ical properties of SPH and the implementation of SPH. The numerical properties
are more fundamental and mathematical in nature, while, as the name suggests. the
implementation work is more applied. These two categories overlap and rely on each
other providing a continuity to the study of SPH in this work. Each of these areas

is discussed below.

The numerical properties of any technique form the mathematical foundation
upon which the method is built. Without these, a technique is simply an empirical
method, approximating a differential equation under certain test conditions. For
most techniques numerically solving differential equations, the properties of interest
are consistency, stability, and convergence. Also in this category is any other prop-
erty which is fundamental to the method itself. In SPH, the kernel function has
fundamental influence on the properties above as well as accuracy. Therefore, in this

dissertation, a chapter is devoted to each of these four topics.

The implementation of a technique is a mixture of engineering, physics, com-
puter science, and mathematics to convert the fundamental properties into a usable
tool. Therefore, discussing this category would vary from technique to technique and
problem to problem as to what to include. For the SPH method, the kernel function
is a good starting point. Although it was also listed as a numerical property, it is a
primary element in implementing the technique and is easily changed from problem
to problem. Two items that also fit in the category of implementation issues (and
also closely relate to the HVI problem) are the areas of time stepping and shock

handling. These two items each have a chapter devoted to them.
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1.3 Contributions

Chapter II (Background) discusses relevant background material on the equa-
tions of interest, other numerical techniques, and SPH itself. This is essentially a
review of material from the literature. This chapter is quite useful, in that it is one
of the few instances that all of this background material appears in one place with

details.

Chapter III (Consistency) discusses the mathematical concept of consistency
with regards to SPH. The general idea of consistency is related to how well the nu-
merical equations model the physical equations. The analysis of the consistency of
SPH is formalized in this chapter. As usual, consistency is studied under the assump-
tions of sufficiently smooth data. Although this seems restrictive, since information
on a numerical function is generally unavailable on a sub-grid basis, the numerical
function can usually be assumed to be smooth without loss of generality. In addition,
for those few times when a smooth function assumption is not acceptable, a second
approach to analyzing consistency is taken. In this, a version of SPH is developed
that is consistent even if the function has a discontinuity in it. Most of the work
in this chapter is performed in one space dimension, but is later shown to apply in
higher dimensions as well. A key assumption in the consistency analysis performed
here is that volume elements based on the particle spacing are equivalent (in a sense

defined later) to volume elements based on the mass and density of particles.

Chapter IV (Stability) discusses the mathematical concept of stability with
regards to SPH. The basic concept of stability is the analysis of error propagation.
As is common, this is first accomplished by performing a linear stability analysis. In
this, SPH is applied to the Euler equations, with the field variables represented by
perturbations around equilibrium points. This sort of analysis yields an amplification
matrix that can be analyzed to determine the stability of the system. An instability is

found in the system and four corrections are proposed. Next, an alternative method
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for studying stability based on the total variation of the function is introduced. This

is a more powerful technique, but more difficult to obtain results.

Chapter V (Convergence) relates the consistency and stability of the method
to the mathematical concept of convergence in SPH. Convergence is the most im-
portant concept since it implies that the numerical solution is close to the actual
solution. Direct proofs of convergence are often difficult to perform, but theorems
relating convergence with consistency and stability are easier to prove. This is the
approach taken here. A convergence theorem, obtained from the study of finite
difference methods, is extended to SPH through the statement and proof of three
new lemmas. Although there are several assumptions made in the theorem and
lemmas that restrict its use, this is a fundamental mathematical result, providing a

cornerstone upon which SPH can build a theoretical foundation.

Chapter VI (Kernels) bridges the gap between the numerical properties and
implementation of SPH by discussing the kernel function. The kernel has primary
roles in the consistency and stability of the method (and therefore indirectly the
convergence). The kernel also directly influences the accuracy of the method. Ker-
nel functions are relatively easy to develop and implement, but they do affect the
computational cost. Hence, a choice of kernel for a particular problem will influ-
ence accuracy, stability, and practical costs; so the choice should be made wisely.
Although kernel requirements, higher order kernels, and the smoothing length are
all discussed in this chapter, the significant contribution is in the development of
measures of merit for SPH kernels. These measures of merit are developed for both
smooth and non-smooth data and then tested using eighteen kernels (many of which
are first proposed here). The results lend some insight into the kernel under given
assumptions while the measures of merit are general enough so that they can be used

under many different assumptions.

Chapter VII (Time Schemes) discusses temporal discretizations that can be

applied with the SPH spatial discretization for the complete implementation of the
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method. This chapter gathers work performed in Chapters III, IV, and VI to fully
discuss three alternative, second order time schemes. In addition two first-order time

schemes are introduced. These are used with the hybrid schemes in Chapter VIII.

Chapter VIII (Hybrid Methods) introduces a flux-limited hybrid scheme to
SPH as a way to handle shocks. This scheme is much newer than the more traditional
artificial viscosity notion in finite differences, but in some cases seems to perform
better. The scheme weight averages lower and higher order methods with the lower
order method having more weight near a shock and the higher order method more
weight away from a shock. A shock sensing algorithm is developed and incorporated
into the flux-limiter (weight function). Six hybrid schemes are proposed and tested
against a baseline case. Under basic assumptions (no-frills implementation) they
perform roughly the same as the baseline. This concept has a long way to go before
in appears in production SPH codes, but the basic foundation for the work is laid

here.

In summary, through six chapters of new work, this dissertation leads the
reader from the basic mathematical foundation through some important implemen-
tation concerns. This provides a solid theoretical basis to the relatively new SPH

method and establishes a foundation for future development of the method.




II. BACKGROUND

The material in this chapter summarizes a combination of articles found in the
published literature, informal papers, and books. The background is split into three
sections: the equations, standard methods, and SPH. In the section on the equations
of interest, the hypervelocity impact problem and related equations are discussed.
The next section is devoted to a discussion of the finite difference and finite element
techniques including some advantages and disadvantages relevant to the equations
and problem. In the section on SPH, the smoothed particle hydrodynamics (SPH)

method is introduced.

2.1 The Equations

This section addresses the fundamental properties of the equations which are
to be solved. It starts with a review of the application, hypervelocity impact prob-
lems, which is governed by the Euler equations, conservation laws, and constitutive
models. The emphasis of this dissertation is the analysis of the SPH methodology:
however, a scenario in which the method is applied assists in fully understanding the
methodology. Also, this scenario creates a framework that ties into the sponsor’s

needs and provides a set of equations to evaluate.

2.1.1 Introduction to Hypervelocity Impact. = The basic problem is to eval-
uate the effects of projectiles impacting upon space assets (satellites, space stations,
shuttles, etc. ). These projectiles can be micrometeroids, pieces of space debris, or
anti-satellite weapons. The source does not matter as long as the projectiles are
small in relation to the overall size of the satellite. In addition, many similar effects
result even when the projectile and target are of similar sizes. Since the speeds of the
orbiting space assets and projectiles can each be over 8 km/sec, most impacts occur
at very high speeds. Although the minimum speed for an impact to be considered a

hypervelocity impact is not firmly fixed, these collisions definitely fall into the HVI
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category following any definition as will be seen. Zukas characterizes HVI by “im-
pact velocities in excess of the local sound speeds (v, > c) and usually the complete
pulverization of the projectile and target material in the impact region.” (71, 72).
The second part of this characterization can imply that very soft. dense materials
are considered HVI at much lower velocities than very strong, low-density materials.
However, since Zukas states that even the strong materials collide at “hyperveloci-
ties” when speeds are in the 8-10 km/sec range, the initial impacts are considered

to all be HVI regardless of materials involved.

Although opinions on this vary, Zukas summarizes the effects at hypervelocity
rather succinctly: “shock waves propagate through the colliding bodies which, for
all practical purposes, behave as fluids. Analytically, the equations of motion and
a high pressure equation of state are the key descriptors of material behavior. Ma-
terial strength is significant only for the late stages of this energy driven problem
and may often be treated with a simple incremental elastic, perfectly plastic model
with an appropriate value of flow stress obtained from dynamic (wave propagation)
experiments. Spallation is a frequently encountered failure mechanism. Because of
the short time scale of the material response, simple time-independent failure criteria

for spall often give satisfactory results.” (72:594)

Some key sources for information on HVI are: Zukas, et al. (71, 72) for impact
dynamics and the two Hypervelocity Impact Symposia (23, 24), especially Anderson
(1) and Asay and Kerley (2) for HVI effects.

2.1.2 HVI Equations.  As in classical mechanics, the starting equations are
almost always the conservation equations. Conservation of mass, momentum, and
energy are all required to be satisfied. Some general information on conservation

laws is presented later. For now, the most basic forms (steady state) of these are
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seen in equations (2.1):

Conservation of Mass: / pdV = const
v
N

Conservation of Momentum: Zm.- v; = const (2.1)
=1

N N
Conservation of Energy: Z m; E;, = Z (m. e + %m, v?) = const,
i=1

=1

where p is the mass density, m is the mass, V is the volume, 7 is the velocity, E is the
total energy, and e is the internal energy. These basic equations are not sufficient to
capture variation in time, but are useful in verifying that a numerical method used

for spatial derivatives conserves the mass, momentum, and energy.

To capture the time variation, partial differential equations of motion are
needed. For this problem we use the Euler equations of gas dynamics. These can be
written in what is referred to as Eulerian or Lagrangian forms. Since the primary
numerical method studied in this dissertation is a Lagrangian formulation, those

forms of the equations are given (ref Anderson (1:33)) below

Dp -

'l—)'i- = —p (V-v) (22)
Dv - 1

— = - —=(V. .
Di F p( o) (2.3)
DE ~ 1

22 P iVide-7 2.
D F.3 P (o-7), (2.4)

where o is the stress tensor and F are external body forces. The % derivatives are

the Lagrangian or Stokesian derivatives and are defined as

= 2452

Dt at or

Although the forms of the Euler equations found in equations (2.2)-(2.4) could be

used as is, it is common in SPH to make some simplifications. The first simplification
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is to just solve for internal energy (¢) instead of solving for total energy (E'). where
total energy equals kinetic plus internal. Nothing is lost in this change because total
energy can be recovered from the momentum and internal energy equations. Further.
because most of the common forms of the equation of state use internal energy. this

is a useful change. To make this change, do the following

DE D 1, De D7 B 1
—_— f— —_— - = _— e — et D — —Vo --,"
Dt Dt (”2‘) Dt T U Dt Fro=2Velo-o)
D - 1 Dt
o = Fe- Vg0 - o5
1 o
= —-V.(o-?) + L—(Va‘) = —(Z-V) ‘U .
p p p

The second simplification is to assume there are no external body forces (that is,
F= 0). For most HVI problems, boundaries are essentially at infinity, where the field
variables are zero. So nothing is lost in this simplification. The third simplification
is to deal with strictly hydrodynamic problems. This implies the deviatoric stress
tensor is zero and the stress tensor given in the equations above can be replaced
with just the pressure, P. This last asstmption makes the analysis much simpler
and is frequently done. However. for many impact problems material strength is
important and this assumption cannot be made in those cases. Material models are
briefly discussed later in this section. Using these three simplifications, the form of

the Euler equations as used throughout most of this dissertation is

D
Continuity Equation: F‘t" = —p(V-9) (2.5)
Momentum Equation: & = —£VP (2.6)
Dt p
D P
Energy Equation: F: = 7 (V-7) (2.7)
. - . Dz
Particle Motion Equation: o = U (2.8)




Note that the particle motion equation was added, where r is the position of the
material point. To complete the system, an equation of state is added to the set of
equations. The equation of state, often written as P = P(p,e), is discussed later in

this chapter.

2.1.3 Conservation Laws. Conservation Laws are the fundamental equa-
tions to solve; therefore the basic concepts are discussed here. The derivations below
are taken primarily from LeVeque (32), Lax (30), and Quinn (50). Other good
sources include Weinacht (67) and Smoller (57).

Although conservation laws are often shown as differential equations, they are
in fact integral relationships that equate the rate of change of the integral with the

flux across the boundary (ref (32:16))

d b

= [ uz,tydz = flua,t) — flub,t)) (2.9)
Integrate this equation in time to obtain

/bu(x,tz)dx = /bu(z,tl)dz + /t”f(u(a,t))dt - /ttzf(u(b,t))dt. (2.10)

If u and f are differentiable, then

u(z,t2) —u(z,ty) = /tltz.%u(:c,t)dt (2.11)
£u6,) = f(ula,t) = [ 3 Sula.t)ds. (212)

Substituting (2.11) and (2.12) into equation (2.10) yields

t2 (b9 9
/tu _L{g;u(zat)“"a—xf(u(-‘t,t))} dzdt = 0. (2.13)




Since this must hold for any region {[a, b] X [t;,¢,]} it can be concluded that

d

Eu(z,t) + (%—f(u(x,t)) = 0. (2.14)

This is often referred to as the general form of the conservation law. It is usually

given with ¢; = 0 and an initial condition such as
u(z,0) = uo(z) z € [a,})] . (2.15)

Differential equations written as initial value problems, such as (2.14)—(2.15), are
often used as the model to solve (such as the Euler equations given earlier) and the
desired solutions are known as classical solutions. Lax has shown (in (30)) that a
solution for this initial value problem exists and is unique (under certain restrictions

discussed later).

Definition 1 (Continuous Function Spaces)

o C™(Q) denotes a space of n times continuously differentiable functions on .

e C() denotes a C*(§Y) space where all functions have compact support.

Definition 2 (Classical Solution) u(z,t) is a classical solution of the conserva-

tion law (2.14), (2.15) if the following holds

1. u € C¥([a,b] x (0,%2])

2. uyz,t) +[f(u(z,t))). = 0 (z,t) € {[a, 8] x (0, 22]}
3. u€e C(la,b] x [0,22])

4 w(z,0) = uo(z) z€[a,b].

The assumptions above, that u and f be differentiable (or even continuous) over the

entire domain, do not always hold. In the equations to be solve, this most often
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occurs at a shock. At those times a classical solution of (2.14) fails to exist and
other solutions must be sought out. The most common approach is to consider the
so called weak solution. The name weak as used here indicates less continuity in the

solution.

Definition 3 C}(R x R*) denotes the space of continuously differentiable functions
f(z.t) defined on {(—o00,00) x (0,00)} and for each function there erists real con-

stants ry, vy, and T such that f(z,t) =0 forz <r;, x> ry, ort > 1.

Definition 4 (Weak Solution) u(z,t) is a weak solution of the conservation law

(2.14) if the following holds for all test functions ¢(z,t) € CL(R x Rt)
/0°°/_°° [deu+ o f(u)]dedt = —/ (z,0)dz . (2.16)

It is relatively straightforward to see that a classical solution of (2.14) will satisfy
(2.16). Simply multiply (2.14) by ¢(z,t), integrate over all time and space, and then
integrate by parts. Due to the compact support of ¢, most of the boundary terms

vanish and equation (2.16) is obtained.

The disadvantage of weak solutions is that they are not necessarily unique.
So an additional requirement must be levied in order to obtain the desired solution.
This is often an entropy condition, which relies on using the Rankine-Hugoniot jump
relationship to ensure entropy does not decrease across the shock. One form of the
entropy condition (sometimes referred to as Condition E) is as follows. If u~ and u*t
are the limits of u from the left and right respectively at a given time, and if v is

between u~ and u* then

S[v,u”] > S[ut,u”] (2.17)
where Sla,b] = fla 3_ {:(b) (2.18)
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This condition can be explained by stating that the flux, f, must lie above the
chord {u~.u*] when u~ < u* and below the chord [u*,u~] when u* < u~. Quinn
(50) proved that a piecewise continuously differentiable solution to the initial value
problem for the conservation law which satisfies condition E is unique. That proof is
not repeated here. Other entropy conditions are given in the literature, but they are
all essentially the same since the Rankine-Hugoniot relationship is the foundation of

all the forms.

2.1.4 Additional Equations and Models. In addition to the conservation
equations just discussed (particularly the Euler equations), the equation of state and
constitutive equations must be considered. First, the equation of state (EOS) which
“accounts for compressibility effects (changes in density) and irreversible thermody-
namic processes such as shock heating.” (1:34) Put simply, the relationship among
pressure, density (or specific volume), and internal energy (or temperature) can be
obtained. This is often represented as P = P(p,e). This relationship is derived
mostly from statistical mechanics and also often involves the Hugoniot. The Hugo-
niot curve comes from the locus of points produced by shock compression and can
be considered a material property analogous to a stress-strain curve. Most EQSs are
only valid over a limited range of its parameters. So several different EOSs need to

be available for use with any numerical algorithm. Some of the more common EOSs

for HVI are identified by Zukas (72:600) or Holian and Holian (21, 22).

Holian and Holian (21, 22) state that the Tillotson EOS has traditionally been
the favorite for HVI problems; however, from personal experience the Mie - Griineisen
is also frequently used. Asay and Kerley state “the Tillotson EOS is an improvement
to the Mie-Griineisen formula that has been useful for hypervelocity impact calcu-
lations. However, it is oversimplified and does not give a good description of many
of the phenomena .... In order to construct an EQS that is accurate over a wide
range of densities and temperatures, it is necessary to develop a theoretical model

that includes a treatment of many physical phenomena, as are illustrated in Figure 4
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[Figure 2.1 here].” (2:75) This figure points out the difficulty of accurately modeling
the EOS and is an area on the physics side of the problem in which work could be
done. Holian and Holian (21, 22) compared the Tillotson, Osborne (an analytical
polynomial EOS), and the SESAME library (a tabular EOQS). From their work it ap-
pears that the SESAME library EOS may currently be best for HVI type problems,
but more work should be done to verify this (especially for SPH). However, that is

a subject of future work and will not be pursued in this dissertation.
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Figure 2.1 Equations of State Phenomena (2:77)

The last set of equations discussed here are the constitutive equations. These

are employed to calculate stress, for the most part as a function of strain, strain rate,

internal energy, and damage. As noted earlier, constitutive equations are not going
to be included in the analysis for this dissertation, but a few words are included here

for completeness. The modeler has a great number of choices as to exactly what
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to include and how to implement these effects. The exact implementation of the
material strength is performed by what is usually referred to as a strength model;
while failure mechanisms are usually referred to as fracture models and/or fragmen-
tation models. For HVI problems, simple elastic-perfectly plastic representations are
usually sufficient, especially for early-time initial impacts, as the material strength
plays only a small role in the results. However, if the problem is carried out for
longer periods of time, other strength models may be better. Also for this problem,
the seccondary, tertiary, etc. impacts occur at lower velocities and may require the
use of more accurate strength models. Failure models are not always used, but in all
case: should provide more accurate results, especially when calculating the debris

cloud after an impact event.

2.2 Standard Numerical Techniques

“Analytical modeling of hypervelocity events is relatively straightforward. In
numerical simulations, the accuracy achievable and the problems addressable are
limited mainly by the speed and memory of the computer. The compressible fluid
analogy serves well for many practical engineering applications.” (72:595) From this
quote, it is apparent that Zukas has an optimistic view of the modeling process, but
compared to many other types of problems he may be correct. In this section, numer-
ical methods used to solve HVI problems are discussed. “Computer programs which
handle the propagation of shock waves and compute velocities, strains, stresses, etc.,
as a function of time and position are called h'ydrocodes. Early formulations did
not include strength effects. Thus, metals were treated as a fluid, with no viscos-
ity, and the expression, hydrodynamic computer code came into being; with time,
this was shortened to hydrocodes.” (1:34) Of course, from the previous section it is
obvious that strength can be included in these codes, but the name hydrocode has
stuck. Two methods that have been in use for many years and can be considered

standard techniques are finite difference methods and finite element methods. A
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popular quote credited to Gordon Johnson that provides a general feeling of the
difference between these is “finite difference techniques are an approximate solution
to an exact problem, and finite element techniques are an exact solution of an ap-
proximate problem.” (1:43) The standard techniques can also be classified based on
the type of grid they employ. These are the Eulerian grid (often associated with
finite differences) and the Lagrangian grid (often associated with finite elements).
Both of these methods have been used with varying degrees of success for several
years to study HVI problems. However, both methods have difficulties solving these
problems. This section highlights some of the advantages and disadvantages of each
method and concludes with a discussion of why a particle method might be able to

combine the advantages of each to provide better results.

In the Lagrangian grid method, the grid is fixed to the material and moves with
it. An example of this is seen in Figure 2.2. This seems to have several advantages,
especially for the HVI problem. Some of these are: the code is conceptually simpler
and should be faster because of no convective terms, time histories are easily obtain-
able, material interfaces and geometric boundaries are sharply defined, the opening
and closing of voids at interfaces can be computed, material models (constitutive
equations) are well integrated into the method, and irregular geometries are easily
treated. The disadvantages center around two areas: a sliding interface and mesh
distortion. Elaborate sliding interfaces are required to model impact (as well as
other) problems, reducing or eliminating the computational simplicity and cost ad-
vantage. In addition, these sliding interfaces have little theoretical basis to guarantee
convergence to a physical result. The very large distortions (which occur in HVI)
can have even worse effects. The time step (based on the smallest element size) can
become too small to be efficient. Quadrilateral elements can become turned inside
out (or bow-tied) causing negative volumes, which causes conservation to be lost.
Triangular elements can also have problems where one element might have very large

positive pressure and its neighbor have very large negative pressure. Finally, highly
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distorted elements can cause errors in constitutive equation evaluation. The option
to rezone is available in Lagrangian codes. However, with each rezone some material
diffusion occurs and material histories are lost. Also. as the frequency of rezones
goes up. the code starts to resemble an Eulerian code (in an overall sense). So even
though there are some very good advantages to Lagrangian codes, the disadvantages

often lead modelers to Eulerian representations.

Figure 2.2 Lagrangian Example (72:602)

An overall preference for Eulerian methods is indicated by the large percentage
of papers in the proceedings of the last two Hypervelocity Impact Symposia (23, 24).
The Eulerian method has a fixed grid in which material is placed in this grid and
is allowed to flow through it. An example of this is seen in Figure 2.3 (although
the material interfaces in the partially filled cells are not as distinct as shown). The
advantages and disadvantages seem to center around the same item: the mixing of

material in each mesh cell. For problems that physically have materials that mix this
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is advantageous, albeit a numerical mixing process rather than physical. Also. large
distortions do not cause the numerical problems of the Lagrangian method. However.
material interfaces can quickly become lost in this method. Although many new
techniques to reduce this problem and handle mixed-cells are being derived, there
are still inaccuracies as well as a limit on the number of materials in a cell (often 2). In
addition, any unusual geometric shape is distorted and often has details lost using an
Eulerian grid. The last disadvantage of Eulerian methods is their requirement to grid
and model the entire problem space. In a problem that has a large amount of void,
such as a satellite impact, this void becomes part of the computational process. This
usually requires the modeler to use a larger grid spacing for computational efficiency

at the expense of resolution and accuracy.

L

-

Figure 2.3 Eulerian Example (72:603)

From the discussion in this section, it may appear that the existing, standard

techniques have no merit. This, of course, is untrue. Many of the problems in these
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methods come from the combination of factors that make up an HVI problem. Also,
for small-scale, single-impact analyses some of the disadvantages do not cause major
difficulties and results from these techniques may be used. However, when analyzing
a large-scale situation, impact modelers looked elsewhere for numerical techniques
to more accurately model the HVI problem. This search lead them to consider par-
ticle methods. Although there are several different approaches to particle methods
(7, 20, 61, 12, 33), as discussed in the introduction, the focus in this work is on
Smoothed Particle Hydrodynamics (SPH). The general notion in SPH is to repre-
sent the material at discrete points (or particles). These points can be considered
analogous to grid points (from finite differences) or even elements (from finite ele-
ments). But, it is best to consider them as interpolation points. Provided a sufficient
number of particles are used, material interfaces should be modeled quite well like a
Lagrangian code. But since there is no grid in SPH, it should not have the problems
of distortion and tangling caused by HVI. The particles must be smoothed out to
represent a fluid continuum flow and not just a discrete molecular interaction (such
as on an atomic level). Then, if the method can be made computationally efficient
it would combine the best of both worlds. Of course, like any numerical technique
SPH has its disadvantages as well. However, it seems to have great promise and
needs further study. Hence, the remainder of this dissertation reports the results of

that additional study on the method known as smoothed particle hydrodynamics. -

2.3 Smoothed Particle Hydrodynamics

As described at the end of the previous section, Smoothed Particle Hydro-
dynamics (SPH) is of interest as a possible alternative to the more standard finite
difference and finite element techniques in solving hypervelocity impact type prob-

lems. In this section, the basics of SPH and some of the enhancements are described.

2.3.1 Introduction. SPH is a gridless, pure Lagrangian method for solv-
ing the Euler equations of gas dynamics. Within particle methods, SPH fits into
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a Particle-Particle category as described by Hockney and Eastwood (20). That is,
the state of a system is determined by a collection of particle positions and veloc-
ities while forces are calculated through interparticle interactions. Particle-particle
methods should be quite efficient provided long range forces are not calculated. SPH
was originated by Lucy (35) and Gingold and Monaghan (12) in 1977. It has been
used to study several different types of problems, including: astrophysics, gas dy-
namics, plasmna (MHD), relativity, and impact. A large amount of literature on SPH
was studied and assimilated into this section. Some of the better sources used here
include: Gingold and Monaghan (12, 13), Monaghan and Gingold (37), Monaghan
{36, 38, 39, 42, 44), Benz (5), Bicknell (6), Libersky (34), and the two SPH workshops
(9, 69).

2.3.2 Kernel Approzimation. SPH is often derived in a two step approach.
First is the kernel approximation described here. Second is the particle approxi-
mation described in the next subsection. The name used in the SPH literature is
kernel estimate. However, it is somewhat misleading, especially in the presentation
in this dissertation. More appropriate names would be kernel approximation, kernel
average, or smoothed average. Hence, the term kernel approximation is used in this

dissertation.

The kernel approximation can be thought of in two ways. First, using ideas
from distribution theory, an approximation to a delta distribution representation of
a function can be obtained. This is only mentioned in passing in a few papers so
I will concentrate on the second, more popular notion. First, select a continuous
function with other appropriate requirements described later and label this function
as the kernel. Then multiply an equation by the kernel and integrate to obtain the
same results as the distribution idea. These ideas lead to the kernel approximation

of f shown in equation (2.19)

<fFE)>= fulF) = [ F) W=, h) dF (219)
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where

/ﬂ W(F, —Fh)dF =1, (2.20)

h (the smoothing length) is a measure of the width of the kernel function W, and  is
the spatial domain. In equation (2.19) the notation of the angle brackets (< f(7,) >)
and the subscript k (fi(7,)) are found frequently in the literature to identify the

kernel approximation (estimate) of a function, so they are used here.

In the SPH literature, the kernel approximation (estimate) is often referred to
as an order h? or second order method. The error analysis appears to some degree
in Monaghan (36), but not to the extent that I would like to see it. Therefore, the
derivation of the error bound is omitted here and derived fully in the next chapter.
However, simply note, that if the kernel W is normalized, is an even function, and

has compact support then

f(7) = f(7) + Eu(f.7) (2:21)
whete  E(f7) = 5 [[[@VEAE) W@k di  (222)
for §, = &,(@) eq .

The bound on the error term is
\Ec(f,7)] < exh?, (2.23)
for a small, bounded constant e, (see equation (3.5) in the next chapter).

2.3.3 Particle Approzimation. If a set of N points is given, distributed
randomly (or quasi-randomly) according to number density, n(7), a Monte Carlo
approximation (2.24) of equation (2.19) known as the particle approximation may

be obtained. See Hammersley and Handscomb (14) and Niederreiter (46) for more

2-16




information. The approximation is

~

L W, = 7h). (2.24)

(75

N
7)) = Y

=1

3

where n(r;) is the number density. This particle approximation was shown by Mon-
aghan (36) to be similar to orthogonal function interpolation. However, they differ
in the type of kernel being used and in the error. Also interpolation often uses a
fixed set of points usually determined by the method, but in SPH the points move
and are determined by the problem itself. Regardless of how to get to the particle
approximation, it may be easily believed that as N — oo, if ?(lr’ﬁ — 0 VjeN, then
fa(To) — fi(75). Of course, there are errors in the particle approximation, but they
are more difficult to develop than the errors in the kernel approximation. But it

would still be desirable to show the relationship

falzo) = filzo) + Ea(f,2.) - (2.25)

Unfortunately at this time it would require a great deal of background in probability
and Monte Carlo theory, so just a few general comments are made. The older SPH
journal articles used a Monte Carlo argument, stating the error would be proportional
to VIN An error such as this could easily dominate the problem or require extremely
large numbers of particles to be used. However, this was found to be not very close
to the actual errors seen in numerical experiments (too pessimistic). Monaghan (36)
hypothesized this was because disorder was initially low (and so were fluctuations)
and when the problem became more disordered large fluctuations were prevented
because they required too much energy. Basically the physics of the problem kept
the numerical errors from getting out of hand. So then, looking at the problem even
when an instability arises, the error is more likely to be based on disordered quasi-
randomly distributed numbers which has error O(Q'%ﬁ) where d is the dimension.

See Niederreiter (46) for more information on this argument.
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2.3.4 Procedure. For anyv particle :. there exists a mass. m, = m(r,)
and mass density, p; = p(r;) such that the number density equals the mass density
divided by the mass, n(7;) = £-. So the general SPH approximation for a function

can be obtained fronm equation (2.24) as shown in equation (2.26).

|3

(7)) W(F, — 7y, h) . (2.26)
P;

N
fn(f:o) - Z

In the next chapter the relationship f,(7) = f(7) + O(h%. hAz) is derived fully with
the value of f,(F) given in equation (2.26). However, at this time, note that the

bounds given in the literature are

f(F) = fn(F) - Ek(fvf‘) - En(fvf')

N _ d
> By wir- s + ot 20 ean)
=1 Pi

il

In addition to the equation above, there are two other formulations that would be
useful to generalize in SPH for later use: the gradient and the divergence. These are
given below.

The Gradient. Given a general partial differential equation: %—'t‘: = VB

for functions A and B, the particle approximation may be systematically derived as
follows. First, multiply by the kernel (W), integrate, and then use Gauss’s Theorem.
Consider only the VB term

<VB>

/; [V.B(A|W(7, — 7, h) dF

= /m BAW, — 7, h)7dS — /QB(F)V,W(FO-F,h)dF,

where V. is the gradient with respect to 7. W is defined to have compact support

and often B has ouly short range effects (so in some sense B has compact support
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as well), therefore the surface term is taken to be zero. The result is then

<VB> = - [ BAV.W(F, - h)d7 = /QB(F)VOW(FO—F,h)dF

Q
vofﬂ B(AW(, —7h)df = V<B>,

where V, is the gradient with respect to 7,. Therefore, for problems with boundaries
at infinity or when B is sufficiently far from the boundary, the surface terms are zero.
Hence this results in < VB > = V < B >. Note: for boundary value problems, the
surface terms do not necessarily vanish and can cause large difficulties and confusing

formulas. See Chapter III, VIII, and Campbell (8) for a discussion of these types of

problems. Now consider the entire equation % = VB. Then
<d—A> = <VB> .
dt

Using equation (2.21) and the work above to obtain
dA dA
= Ex (I-,r) = V<B>.

From equation (2.25) the particle approximation of B, B,, is used for the < B >
term with the results

-

dA dA
E‘ = VB,l ot E,‘(B,T) - Ek (E,T)
N m; - - - dA.
= V J=zl E—B(Tj)W(T—rj.h) - E'n(B,r) - Ek 5 , T

i

N .
> 2L B(r) VW(F - 7. h) — En(B,r) — Ex (i’i,r) :

i=1 pJ
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or for particle ¢

g N ' 4
(%) = (VB), = T‘%B(f‘})viw(ﬁ—ﬁ,h) + O(h?, (inV) ), (2.28)
i =1

where V; is the gradient with respect to ;.

The Divergence. Given a general partial differential equation: % =V.B

for functions A and B, the particle approximation may be systematically derived
similarly as before. Multiply by the kernel, W, integrate, and use the divergence

theorem to obtain a surface integral. Considering only the V - B term

-

<V.-B> = /Q[v,.é(ﬂ]W(ﬁ,-F,h)dF
- /,, (V.- (BAW(, -7, b)) - [B#) - V,W(F, - 7 b)) dF
= /aﬂ BFR W, — 7 h)-7dA — LB’(ﬂ-V,W(FO—F,h)dF

= [ B»-v. Wi, -7 hydr,

where V, is the gradient with respect to 7 and V, is the gradient with respect to
7. The last step uses the compact support of the kernel as before, making the term
on the surface zero. Also, since W is assumed to be even, the gradient of the kernel
can be interchanged from V, to V, with a negative sign cancelling the existing one.

The result is then

(v-B) = /ﬂ ﬁ(ﬂ-VOW(Fo_F,A)dF

I

vo-/nB‘(F)W(f;—r*,h)dr = V.<B>.

Therefore, for problems with boundaries at infinity or when B is sufficiently far from
the boundary, the surface terms are zero. Hence this results in < V . B >=

V. < B >. Now consider the equation multiplied by p, p32 = p(V- B). Expand
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the product to obtain

dA

p— = p(V-B) = V-(sB) - B-Vp.

Apply the results from the gradient and the divergence above and equations (2.21)
and (2.25) to obtain

dA

— - dA - -
P = V.(pB)y — B-Vp, — Ek(PTi?,l‘) — En(pB,z) + B-En(p,z) .

Use equations (2.26) and (2.28) above to obtain

N -
(%) = [vi-;ij(ﬁ)W(ﬁ—ﬂ,h)]
(InN)?

N )

N
- [B(ﬁ')' > m; VW7 - f},h)] + O(h?,
=1
N . N -
= Y m; B(R)-ViW (7 = 5, h) — 3 mB(7)- VIW(Fi - 75, h)
j=1 =1
(InN)4
N ).

+ O(h?,
So for particle i

- N - .
((fi_?) = (V-B) = i‘; m; (B(;) — B(7)) - ViW (7 — 7, )

(inNy¢
N )

+ O(R?, (2.29)

Using these procedures the mass, momentum, and energy conservation equa-
tions may be derived in SPH format. Note: it is possible to derive other equations
as well using this general procedure. In subsequent equations, the error terms are

often dropped and ‘~’ is used for the estimates and approximations.
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Product Rule. A product rule for the SPH approximations is needed in the

work that follows. So for functions A and B

<A>< B> = [A+ Ei(A, z)][B+ Ex(B, )]
= AB + BEW(A,z) + AE((B.z) + Ex(A,z) Ei(B,z)
= <AB> - E(AB,z) + BEW(A,z) + AEx(B,z)
+ Ex(A,z) Ex(B,z) .

Hence, to within the order of the method, the approximation of a product equals

the product of the approximations.

2.3.5 Density.  Since the distribution of the particles is based on number
density, the mass density (p) should play a significant role in this method. There
are two ways in which to calculate the density, both of which are frequently used.
The most common, especially in the older SPH literature, is to calculate the density
directly from the particle approximation given earlier in equation (2.26). If the
function, f(7) is taken to be p(7), and therefore f(7;) = p;, the result is shown in
equation (2.30):

N
p(7) = pu(F) = Y m; W(F—75,h). (2.30)

=1
Several of the early papers had m; = m constant for each particle. So for M = Total
Mass, ¥ = m and p(7) ® m ZJN=1 W(r—r,h) = M Zf;l W (775, h). However,
the more general form (2.30) is used throughout this dissertation.
Some general notes on conservation of mass. In the following integrals, W

has compact support so the domain §2 can be taken as finite. This justifies the

interchange in the order of integration.
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(i) /ka(r"') &F = /ﬂ/ﬂ o(Z) W(F — £, b) di dF

/Qp(;i’)/QW(r‘-’—a':‘,h)dFdz* - /np(f) i = M

So pix conserves mass exactly.

(i7) /npn(f")dr'" - /ﬂ}l‘v‘_‘mj W(F — 7, h) dF

i=1

N N
- Emj/nW(F—f‘,-,h)dF =Y m =M
=1 i=1

So p,, also conserves mass exactly. Hence, using the SPH density-by-summation form

(2.30) conserves mass exactly.

The second method to calculate density is to solve the continuity or conser-
vation of mass equation (2.31) directly in addition to the momentum and energy

equations:
Dp;
Dt

—(pV-0);. (2.31)
where % is the Stokesian derivative. The continuity equation form is discussed very
little in the literature except to say that there may be some computational efficiencies
to be gained by using this form. However, from recent symposia it appears that for
HVI problems this approach is receiving more attention because of its ability to
handle material boundaries better. It does, however, take away the natural notion
of the density obtained in SPH, but that is not a major problem. One SPH form for
equation (2.31) is
Dp; 2 m;

"Et" = =p Z ;;vj 'V,W(f‘: - i{hh) ’ (232)
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where ¢ is the velocity and the subscripts : and j are values at 7; and 7 respectively.
This is not a very popular form; but noting (let B = 1 from the gradient work

earlier)
N

0 = (p7 Vi) =~ pidis Y. LVW(F—75,h) . (2.33)

j=1 Pj

So adding zero in the form of equation (2.33) to equation (2.32) yields

D ; N .
%o S D5 - 5) - VW = 7 R) (2.34)
Dt =1 P;
J
Although equation (2.34) is somewhat popular, the most popular form is obtained

by applying the identity
p(V-7) = Ve(pv) — 7:Vp,

and using the general procedures given previously in equation (2.29) to obtain the

SPH formulation shown in equation (2.35):

N
=3 m; (@ — 7)) VIW(F =7, h) . (2.35)

i=1

D
Dt

where ¥; and ¥} are velocities at particles ¢ and j respectively. This points out a use
of what Monaghan calls the “second golden rule of SPH which is to rewrite formulae

with the density placed inside operators.” (44:545)

2.3.6 Momentum Equation.  The general form of the momentum equation

is: g—f = - %VP — V® + Fyisc. Where P is the pressure, ® is an external force
and Fyi, is a viscosity term. However. only the simplified (inviscid) momentum
equation is considered in this paper: %%’ = —%VP. So then using the product rule

< g—f > —- < -}; > V < P >, and using P, for < P >, SPH equations may be
obtained. However, this form can lead to conservation quandaries (both energy and

momentum) because conservation can only be guaranteed to within the order of the
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scheme. Hence, some momentum could be lost (or gained) at each time step. So

consider a few different identities
(1)

\% P
VP _ v(—) + —P;Vp. (2.36)
p p p

Then derive the following using the gradient work earlier, where the i and j subscripts

imply evaluation at the points 7; and 7

N
v(f) ~ v(ﬂ) =y "‘JPJ VW (7 - 7, k)
p P n =1 J

N
V(p) = Y m; VW(F—7j,h).

i=1

Hence for particle ¢

Dv P P;

N om;P; - . P XN -
=~ -—z; /J)z 1 V;W(T,’ —Tj,h) —2 Z ‘ -—‘I‘j,h)
= 7 : i=1
N P,
= =) m; (— ) V.W(7;, —7;,h). (2.37)
j=1 P, P.

With W even and m constant in time, this conserves momentum exactly since

N D¥, N N P, P L.
th mid = ) m™ihr < =22 mim; r + 7 ViW(r —7,h) = 0.
i=1 =1 =1 j=1 7 1

Vpp = 2\;? V(VP) (2.38)
Ds\ 2P
(%), = -EPwm
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P P,

VW7, - 75, k) (2.39)

Derivations using the identity (2.38) can be found in some of the references. Mo-
mentum is also conserved exactly with this, but it does not work if P is negative.
Version (i) is much more common in the literature. There are additional forms, some
of which are addressed later. Finally, an artificial viscosity term is frequently added

to any of these forms and is discussed more later in this section.

2.3.7 Energy Equation.  The general form of the internal energy equation
(without sources or sinks) is: 22 = — %Vn')‘. There are several ways to develop
the SPH equations for this, but the identity used in the momentum equation and
the artificial viscosity must be compatible with whatever method is used, or else

conservation could be lost. One possibility is to use the total energy equation

1
Y (miei + §m.-13?) = constant .
=1

Then taking the derivative to find

N De; D7;
-.2 = s .
[;—‘ (m;e; + m, )] = .‘2—1 (mi—— Dt + m; U;e Dt) 0

N De; Dv;
o 2 m (ﬁ) B ; ™ ('”‘ Dt ) '
The SPH form for De/Dt is then obtained by using the SPH momentum equation

for Dv/Dt. A more common technique is to use identities similar to what was done

for the momentum equation, such as

= — 2 (9-(o7) - 7 V) (2.40)
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./

-Nm

N
Z U —0;) V,W(r, —7,h). (2.41)

The version of the SPH energy equation found in equation (2.41) is one of the more

common found in the literature; however several others are found. For example, by

De Pv . P
e () ().

equation (2.42) may be obtained:

taking

( ) ﬁl: 2 —7;) - ViW (i — 75, k) . (2.42)

1=1 P;
Another popular form is found by taking the average of equations (2.41) and (2.42)

to obtain the symmetric form found in equation (2.43):

De 1 X P, P
— ] = = w 7 h) . i
(Dt),~ 7 2™ (p; ¥ p,) (5 =) - ViW(R =75, B (243)

2.8.8 Conservation. An interesting difficulty with the SPH formulations
given previously is that frequently a form is derived that represents the given equa-
tion, but conservation is lost. Monaghan points this out even more by: “it has been
found that if the thermal energy equation is integrated using any of the SPH forms
given above, and if the density is calculated using equation 3.8 [equation (2.30) here],
the total entropy is not conserved as accurately as the energy. If an entropy equa-
tion is integrated then the total energy is not conserved as accurately as the entropy.
However, if the gas is ideal, the total entropy is conserved exactly if the density is
calculated using equation 3.9 [equation (2.35) here] and the thermal energy is cal-
culated using any of the forms given above. In this case the mass is not conserved

exactly. It seems one cannot have everything!” (44:549)
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2.3.9 Particle Placement. ‘ery little information appears in the literature
regarding initial particle placement. For the most part, the impression is that parti-
cles are just poured into the object being modeled until its full and then the problem
is actually solved. This, of course, is far from the truth. For rectangular objects in
Cartesian coordinates, placing particles on a regular rectangular mesh seems to be
reasonable and is a common practice. When problems involve objects with more ir-
regular shapes or other geometries are being studied, other placement schemes may

be in order.

Monaghan (41) experimented with placing particles on a rectangular mesh
where the rows in an impactor lined up with a target and compared that to when
the rows were offset by half a row with each other. His results indicated that with
just an artificial viscosity term some non-physical penetration (known as streaming)
is seen under certain conditions. He proposed a method to move the particles with a
different velocity than the fluid which eliminated the penetration. This is discussed
more later in this section. However, it does point out that initial particle placement

is important and must be considered.

A more unusual example given by Fulk (11) involved a smaller projectile im-
pacting a thinner target than Monaghan used. When the particles were placed on
a rectangular mesh, a non-physical peeling of the layers was observed on the front
of the target. That is, lines of particles separated as a whole). Some backsplash is
expected, but it was too extreme. A second calculation was performed where the
particles were placed on a rectangular mesh and then randomly perturbed by a small
amount around the mesh point. The output from this was much more realistic and

almost all of the non-physical peeling was eliminated.

A third example is for the Riemann Shock Tube problem in one dimension. In

this problem there is a pressure shock. However, numerical techniques in general do

not model a shock, but a steep pressure gradient of the form: %%. In performing

this test case, the velocity is not nearly reaching the peak value it should from the
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analytic solution. But by changing the particle spacing in a very small region around
the initial shock, the results were much more accurate. However, if the particles on
either side of the shock were placed too close initially, they tended to cause a crossing

of two particles and erroneous results.

From these three examples it seems that for even a geometrically simple prob-
lem, the initial particle placement must be considered. This is a topic for future

study and will not be addressed further in this dissertation.

2.3.10 Neighbor Searches. With all the simplicity that comes with SPH,
there are some difficulties. One of the biggest is the need tc find the neighbors of
any given particle at each time step. To calculate the sums given previously for a
given particle 7, all other particles may be used. Unfortunately, this would make
the method scale as O(N?) which could be cost prohibitive in computation time.
However, if the compactness of the kernel is taken into consideration, only a small
subset of the total number of particles need be considered for any given particle.
The question of how to efficiently find the particles that are within a small range is
known in computer terms as range searching. In SPH it is more commonly referred
to as nearest neighbor searching (although nearer or near neighbor would be more
appropriate). Currently two methods are popular in the literature (although this

issue is not often addressed): linked-lists and tree search.

The grid generated linked list method is the older of the two and most popular
if A is constant in space. In this method a temporary grid is overlayed on the problem
domain. The grid spacing is carefully selected to match the kernel being used. For
example, if B-Splines are being used as the kernel, they have 2k compact support, so
the mesh spacing should be set to 2h. Then for a given particle, its nearest neighbors
are going to be in the same grid cell or the immediately adjoining cells. So this search
is only over 3, 9, or 27 cells for 1, 2, or 3 dimensions respectively. The linked lists

method allows for each particle to be assigned to a cell and for all the particles in a
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cell to be chained together for easy access. Creation of the linked list is only about
3N operations. When actually calculating the equations of motion, the outer loop
should be over all the mesh cells. This allows the forces between any two particles to
be calculated only once instead of twice. This method scales as N. .V where N, is the
average number of particles per cell. Provided N, is sufficiently small in comparison
with V. this method is quite efficient and considered O(/N). The biggest difficulty
with this method is when variable smoothing length is used. The grid spacing cannot
be optimum for every particle and therefore, could be much less efficient. Linked

lists are discussed in more detail by Hockney and Eastwood (20:277).

Tree searches became popular when authors started working with variable
smoothing lengths. They involve creating ordered trees based on the particle posi-
tion. Once formed, the trees can be efficiently searched to find the nearest neighbors.
Several different tree algorithms have been proposed, but the most popular seems to
be the oct-tree. This method recursively splits the region into octants that contain
the particles. Eventually the leaves on the tree are the individual particles. Tree
methods, in general, scale as O(Nin(N)). This makes them not quite as efficient
as the linked lists for fixed h, but they may be more efficient for variable h. Refer-
ences for the tree algorithms include: Sedgewick (52), Hernquist and Katz (19), and
Stellingwerf and Campbell (59).

2.3.11 Artificial Viscosity. Because of the smoothing nature of the SPH
method, it might not be able to handle shocks very accurately. But, in fact, if an
appropriate artificial viscosity term is used, SPH can handle shocks as well as any
standard technique. The original thought was to use bulk (—ahpcV-v) and/or von
Neumann-Richtmyer (aph?(V+0)?) viscosity terms from finite difference techniques.
This proved to be disappointing in shock tube calculations. So modified versions
of those were needed. A good summary of the work may be found in Lattanzio,

et al. (28). They first add the term shown in equation (2.44) to the conservation
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equations:
h{)‘;"’?l g - -
T g a1 if 573, <0
w, =4 alry+n ) (2.44)
0 otherwise ,
where 0;; = ¢, — U,, 7, = 7, — 1, ¢ is the sound speed, and 7 =~ 0.1h. This

term handles bulk and shear viscosities and is similar to the bulk viscosity given
earlier. However, in high Mach number shocks, this does not stop streaming (the
non-physical particle interpenetration). So a second term, quadratic in w is also
added. This term is similar to the von Neumann-Richtmyer term from earlier. The
final result is shown in equation (2.45):
I, - ﬂiﬁﬁi if 5,7 < 0
0 otherwise ,

(2.45)

where a and 3 are free constants, ¢;; = %(c;+c,-), and p;; = %(p;+pj). This II,; term is
added to the -f-:& term in the momentum and energy equations. Note: most authors
use 4 instead of w for this second term. More information on artificial viscosity
and controlling penetration may be found in Lattanzio, et al. (28), Monaghan and

Poinracic (40), and Monaghan (43).

2.3.12 Artificial Heat Conduction. The artificial viscosity term discussed
previously often provides good results when modeling shocks; however, under some
severe conditions excess heating can result. This term is usually referred to as wall
heating from the classic example of a stream of gas being brought to rest against a
rigid wall. The excess heating problem was fixed by Noh (47) by adding an artificial
heat conduction term to the energy equation. An SPH version of the wall heating

term was derived by Monaghan and is given in equation (2.46):

CIJ € — - —
H = 2 i —75) - ViW (i — 7, h 2.46
Jz_; pu |7’, r]|2( ) ( 2 ) ( )
( = grhe + gh*(|V-d] - V-9), (2.47)
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where A;, = %(A,- + A,) and g, and g, are user supplied constants. The H, term

above is added to the end of the energy equation when necessary.

2.3.13 Penetration Avoidance.  One of the difficulties of particle methods
applied to impact problems is that lines of particles can penetrate or stream through
one another. This results in a non-physical mixing of the materials. It occurs in
SPH because field variables (in particular, the velocity ficld) do not have to be
single-valued. The lack of single-valued fields can ailow two different particles with
different velocities to occupy the same position. Of course, a judicious choice of
initial particle placement can reduce this, but that is not solving the difficulty. just
masking it. Most, or all, of this can be eliminated by using an appropriate artificial
viscosity term (there are several examples in the published literature). However, in
certain prouiems, such as subsonic flows, this is not sufficient. Monaghan (41, 43)
suggested an alternative: move the particles at a velocity approximately equal to
the average velocity in its neighborhood instead of the velocity of the particle itself.

Equation (2.48) is the standard formula for moving the particles.

% - 7. (2.48)
The velocity is replaced with 3; as follows
Dr; - N ¥ — U
- = 6 = U - | = W(F; =75, k), 2.49
Di v ) € JZ=:1 m;j ( » ) (75 = i, h) ( )

where g;; = 2(p; + p;) and e is a small constant. This concept can introduce extra

dispersion, but no dissipation.

2.8.14 Equations of State. The equation of state (EOS) has received
very little attention in SPH papers so far. The main reason is that the EQS is more
related to the problem being studied, than to the method itself. For the HVI problem

discussed in the previous section, an EOS that handles metals and high pressures
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must be used, such as the Mie - Grineisen EQS. From the literature, Tillotson,
Mie - Gruneisen, and SESAME library have all been used. As long as care is taken
in the implementation, the choice of EOS should not cause too many new difficulties.

Forms for both the Mie - Griineisen and Tillotson EOS are given below.

As described by Libersky, et al. (34) the Mie - Griineisen is quite simple.

Pressure is a function of both density and internal energy as follows

, r
Plpe) = Pip)poct(1=5u) + Tole—c.) (2.50)
, g+ (So = L)p? + (S, — 1)(3S, — 1)u® if 4 > 0 (Compression
Pi(p) = | Pressiotd i)
@ if 4 < 0 (Tension)

p
p = —=1 2.52
£ (252
r = Zr,, (2.53)

p

where I';, S,, co, and p, are material constants and e, is the initial energy. Also see

Anderson (1) or Seglettes (53) for more information.

As described by Benz, et al. (4) the Tillotson EOS is also relatively simple to
implement. The Pressure, P, is a function of both density and internal energy and

takes on one of three different values as shown in equations (2.54) - (2.56):

b

Pomaper oAl oyento aw
I+ e Po

Poo= ape+ (22 4 AL penE D) @ (o5
1+ 2% Po

P, = Pc(e—e,’)-l*ic(es‘e)’ (2.56)
63_ L]

where a,b,¢,,p,, A, B,e,,€',,v, and ¢ are constants that must be supplied by the
user. The P, function is used for condensed states, the P, function for expanded

hot states, and P, for the transition between the two. The exact determination for
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which function to use for P is given in equation (2.57):

P. ifp>p,ore<e,
P(p,e) = P. ifp<p,ande>e¢, (2.57)

P ifp<p,ande,<e<ely.

2.3.15 Strength Models. As discussed earlier in this chapter, material
models such as strength, fracture, and fragmentation can be important in modeling
impacts (especially for metals and at lower speeds). The references to material
models in the literature are mostly from Libersky, et al. (33, 34). These papers
are also the first ones in which extensive use of the continuity equation is used to
find density instead of just the SPH approximation. However, the main additions
in these papers are that of an elastic-perfectly plastic strength model to SPH. Key
to adding the strength model (constitutive relation) is replacing the pressure (P) in
the previous formulas with the viscous stress tensor (o). The stress tensor is defined

in equation (2.58):

o = P§-S
or o*® = P§P_8§*F (2.58)

where P is the pressure, § is a Kronecker delta tensor, and S is the traceless sym-
metric deviatoric stress tensor. The Greek superscripts are used to denote the space
direction with summation on repeated indices. Note: if the deviatoric stress is zero
(as in the case of purely hydrodynamic flow) this just reduces to the pressure as
before. There are several different formulations for the Stress rates, but according

to Libersky the most common is the Jaumann rate. This is given in equation (2.59):

SoB p(é"ﬁ—%é“ﬁé”) + SCTRPY 4+ S8 R
= pé® + SR 4+ $P R, (2.59)
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where u is the shear modulus, ¢ is the strain rate tensor, € is its traceless part, and

R is the rotation rate tensor. Formulas for ¢ and R are given in equations (2.60) -

(2.61):

1 [Ov* VP
af __
) (8:1:3 + 82:"') (2.60)
. 1 [{Ov* P
af _ (27 7
R* = 5 <8zﬁ Bz") . (2.61)

SPH formulations for the above equations can be derived in several variations as
with everything else in SPH, but the forms given by Libersky, et al. are shown in
equations (2.62) - (2.63):

N o
& = 5 X S [f —up)VIW(E - 75 h) + (of — o)) VEW (- 75, h)

j=1 P;
- %D.-é""] (2.62)
. N S
B = 3 %i (v = v )VEW(F = 75, B) + (vf — P )VIW (7 — 75, B)] . (2.63)
=1 P2

To model the plastic flow, a von Mieses criterion is used. When the second stress
invariant, J? = $*5*# exceeds the flow stress (Y,) the deviators are brought back

to the flow surface shown in equation (2.64):

¥,

af __ gaB
% = 5% [2 .

(2.64)

The above equations may be added to the others in order to solve for the stress
tensor and then the momentum and energy equations. As mentioned earlier, the
momentum equation is changed by using the stress tensor instead of the pressure

term; the energy equation is also modified by adding a term that has the deviatoric
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stress times strain. This new equation is given in (2.65):

e L (ADi-sTE). (2.65)

2.4 Summary

Throughout this chapter, several equations and various forms of these were
shown. Although the set of SPH equations should be determined by the problem

being studied, the following is a fairly standard set and offers a good starting point:

Continuity:
Dpi
Dt

Momentum:
Dv; N P; P;
5= -2 (3

Energy:
Dei
Dt

Particle Motion:
Dr; N
Dt

Equation of State:
P, = P(pi,ei)

where W;; = W(7; — 7, k) is the SPH kernel, II;; is the artificial viscosity term, and

H; is the wall heating term.
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At this point, the fundamentals of smoothed particle hydrodynamics and the
background application (hypervelocity impact), are complete. Based on this under-
standing of the method, and a fundamental knowledge of numerical analysis, the
reader can now progress to the new contributions for SPH presented in the rest of
this dissertation. Note: additional background material is scattered throughout the
next six chapters when more appropriate for clarity of understanding. The new con-
tributions are split into two major categories: the numerical properties (Chapters
[II-VI) and the implementation (Chapters VI- VIII). From this point the reader may
move on to any of the six chapters, but I recommend that the reader start with either

Chapter III or VII, depending on their background and interest.
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III. CONSISTENCY

This chapter addresses the mathematical concept known as consistency with
regards to SPH. The basic concept of consistency is related to how well well the nu-
merical equations (SPH) approximates the physical equations. That is, consistency
is analysis of truncation error. SPH has two parts, a function approximation and

derivative approximation; so the truncation error of both of these is discussed.

The consistency is approached first by analyzing the method under the assump-
tions of sufficiently smooth data. This is done by assuming the numerical function
is smooth between the SPH particles. Since information on the function is not avail-
able on a micro-particle scale, this is usually acceptable. This analysis is performed
by taking a two step process. The first is known as the kernel approximation and
the second is known as the particle approximation. In this second step, consistency
results are obtained by taking the volume elements based on the particle spacing to
be equivalent to those based on the mass and density. This approach ends by proving

both the SPH function approximation and derivative approximation are consistent

and of order O(h2, hAz).

A second approach to consistency is then taken by considering what happens
vhen a function is not smooth enough to apply the first approach. In the process,
a new version of SPH is developed that is consistent even if the function has a

discontinuity in it.

The work in this chapter, as with much of this dissertation, is performed in
one space dimension. However, the two approaches described above are both shown
to still hold in higher dimensions. Also as an aside to the chapter, SPH forms of
artificial viscosity and artificial heat conduction are introduced for later use and

shown to be consistent. That is, they vanish as A and Az approach zero.

To start, a formal definition is given. The following general operators are

defined to use in the analysis in this chapter: P is the spatial partial differential
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operator and S is the approximation operator to P. For example, if the spatial
partial differential operator is the first order wave equation then P is 'a?;' However,
in general P is taken as a non-linear first order operator. The following hyperbolic

equations may be defined for any dimension d as

D5(X)

Dr = Pv(X) XeD

paX) . L

Di = Sd(X) XeD
where X = (t,z1,..., T4)
D =([0,T] x Q)

and D are the mesh points (particles) in D .

The system is hyperbolic if P5(X ) = A(7, X), where the eigenvalues of the matrix
A are real and distinct (see Lax (30)).

Definition 5 (Consistency) Given any function f()'(. ) that is sufficiently smooth
in D (and D); let r(f(X)) = P f(X) - S f(X) foreach X € D. Then the semi-
discrete approzimation method is consistent (with the partial differential equation)
iff

lr(HIl =0 as At, Az; —» 0.

Reference: Isaacson and Keller (25) or Strikwerda (60).

In summary, consistency deals with the local truncation error. It is a measure of
how closely the approximation operator resembles the differential operator. The

error estimates needed to prove consistency for SPH will now be built.

3.1 Kernel Approzimation

As mentioned in the Chapter II, the kernel approximation can be viewed from
the point of view of distribution theory. That is, the delta distribution 6(r, — 7)

applied to f(7) results in f(r;). This property is what is approximated using the
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SPH methodology. However, instead of using the delta distribution, apply a kernel
function W to f(r) and examine how the integral of this relates to f(r;). See
Stakgold (58) or Keener (26) for more information on distribution theory. The SPH

kernel approximation as used in this dissertation is shown in equation (3.1)

<fE)>= fulF) = [ f()WE - 7h) dF (3.1)

where

/ﬂ W@, -7 h)df =1, (3.2)

h (the smoothing length) is a measure of the width of the kernel function W, and
1 is a spatial domain. Note, for the time being equation (3.2) needs to hold only in
the limit as A — 0. However, it is useful later on for this to be true for all A. It may
then be hypothesized: if W — § distributionally as h — 0, then fi — f as h — 0.
There is obviously some numerical error in this approximation when A is not in the

limit; this needs to be made more exact.

Errors in the kernel approximation may best be seen by using a Taylor series
expansion with remainder. This is shown here for the one dimensional case only
(see the section 3.6 later for additional work). Assume f is sufficiently smooth (to
be defined more exactly later) so that it can be expanded a° ut z = z, and let
u =T — I,. Also assume the kernel W satisfies equation (3.2), is an even function,
and has compact support. Note at this time, under these assumptions on W, if
u € supp(W) (the support of W) then |u| < kh, where x is the constant that
specifies the support of the kernel. That is, W(u) = 0 for |u| > xh. Equation (3.1)

now results in

fulzs) = /Q f(z) W(zo — z,h) dz = /ﬂ F(u + 20) W(=u, k) du
= [y W [fw) + usle) + 5 e
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= flao) [ W(-u,hdu
+ {'(zo) /Q uW(=u, h) du
+5 [ e Wuh) ) du,
where £, = {,(u). Since W is normalized, the integral in the first term of the sum is

1. Also, since W is an even function, the integral in the second term of the sum is

0. Therefore, the result is

filze) = f(zo) + Ei(f, 7o) (3.3)
where Ex(f,z,) = %./nqu(—u,h)f”(fo) du (3.4)
for £, € Q.

To obtain a bound on the error term, Ex(f, z,), define

K'Z
e = 3 sup |f(€)] - (3.5)

Note: for the kernels considered in this dissertation £ < 9 (and is most often taken
as 2). By the compact support and normalization of the kernel noted earlier, the

bound is

Bulfizal = 5 |[ @ Wb @) du] < 5 [ 1IW(=u W) 1) du

1 2ek
< T e2p2 _ it} — 2 _
< /92fch Wi(-u,h) 5t du = enh /QW( u, h) du

= exh?. (3.6)

It is also easily seen that if f(z) = ¢’(z) then equation (3.6) still holds (Note: in e
the f” term now equals g"’). Also a higher order error bound is possible, but a new
kernel would need to be obtained that has successively higher order even moments

equal zero (see Chapter VI for a discussion of this).
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3.2 Particle Approzimation/Rectangle Rule

As noted in the previous chapter from the published literature, a Monte Carlo

approximation (3.7) of equation (3.1) known as the particle approximation may be

obtained:
N 7 N .
i) = ¥ B wi—mn = & Bm wE-mn. G0
1=1 TI.(TJ) j=1 P;
It was further noted
falTe) = filfe) + Ea(f,7), (3.8)

and the error term, E,(f,7,), is proportional to O(L'"—,{,v):). This implies that as
N — oo, if 7= — 0 Vj € N, then fa(7,) — fu(7,). This discussion from the
literature appears to be valid, but lacks most of the details I would like to see. Instead
of trying to fill in the many holes, alternative quadrature rules are investigated here.
Through this, it was discovered that by applying the most basic of the rules, the

rectangle rule, a reasonable error bound and results similar to Monte Carlo can be

obtained. That analysis is shown here.

Start with the general forward rectangle rule for one dimension (reference

Young and Gregory (70))

/:m f(x)dz = (zipa — 1) f(zi) + E(f, 7i, Tis1) (3.9)

where E(f,zi,zinn) = %(zm - z;)? f'(&) €i € (zi, Tig1) -

Note that in one dimension, the domain € is an interval. Further, because the kernel
has compact support, the supported interval around 7 is just [& — xh,Z + «h]; [a, b]
is used for simplicity. Assume this interval contains N; particles. Number them
Ty,...,ZN, and label the point immediately to the left of a, as z, and to the right of

b as zn,+1. This may be seen in Figure 3.1.
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Figure 3.1 Partition for Rectangle Rule

The composite rule is then

/n fz) W(i—-z,h)de = /ab F(2)W(E — z,h)de
- /“’"“ flz)W( — z,h) dz

Ng

- > /”“ F(z2)W(i — 2, b) dz
3=0"%
Ny

= Z[(x.ﬂ'l —.’L']‘)f(x]') W(.‘i‘—df]’,h)] + Er(fv'i) - (310)
j=0

By compact support W(Z& — z,,h} = 0, so the j = 0 term in the sum in equation

(3.10) is zero. The equation is then

N
fF@WE-ehde = 3 (@50 =) f() Wz - 23, )]

4 E(L3) (3.11)
N

where  Ef,3) = Y5 -5 G WE-6,R], (312)
=1

and §; € [zj,z;41]. To obtain a bound on the error term found in equation (3.12)

define
M; = sup|z;}1 —~ zj
J
KCy . ’
e = —5 sup [ fOW(E-&R)] ] (3.13)
e




To determine ¢;, note that the particles are chosen initially so that 2 — 2M,; <
NeM./h < 2k 4+ 2M,. During a calculation, the particles should be tracked to
determine ¢, such that Ny M, /h < ¢;k, where ¢, is a constant defined as 2 < ¢; < 2¢.
If ¢, becomes too large (e.g. 10) restart with a new distribution of particles. The

error bound is now

Nx
|E.(f,%)] = Z%(%‘H°Ij)2[f(€j)W(5:—§jvh)]'
1=1
Ni 1
< 2_:1 5 | 201 — z; |2 | [f(&)W(Z - &, h)] |
Ne €, MzN;,e,
S LMol s T

Note that, ¢, is a gauge that is used in the above equations to verify that Ar becomes
dense everywhere, and somewhat uniformly. Provided that happens, ¢; will be close

to 2. So the error bound is

|E.(f,3) < erhM,. (3.14)

A backward rectangle rule,

/:7:1:‘.’.1 f(IL') d.’L' = (JI,‘+1 - i) f($¢'+l) + E(f’i» zi+l) ]

can be used instead of a forward rectangle rule. The analysis follows exactly as above

so many of the steps are removed:

Ni
Jf@WE—zhyde = 3 (@50 = 2;) f(@300) W(E = 20, B)]

1=0
+ E.(f,%)
Ni
= Z [(13] - Il‘_j...l)f(xj) W(i - Ijvh)]
=1
+ E.(f,%) (3.15)
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where |E(f, 2} < e,k M,. (3.16)

Hence, the formula (3.15) is very similar to formula (3.11) and has the same

error bound. Finally, averaging the forward and backward methods obtains

Ni

[r@Wa-zhyde = 3 (BT fa,) Wia—z,h) + Eilf5).
Q = 2
(3.17)

with the same error bound as the other two methods.

3.3 Volume Element Calculation

In the previous section, a volume element (Az) was calculated by using the
particle position. However, in SPH a volume element is usually (if not always)
calculated using mass and density (m/p). In this section, two ideas are discussed
to show that these two concepts are similar to each other. First, the two volume
elements are moved forward in time to examine how they differ after one time step.
Second, the two are equated with each other and some of the ramifications of this

choice are noted.

e Consider how the two volume elements change with time. Assume that the

relationship
m

Az ~ — (3.18)
p

holds exactly at a given point in time, then it should still be close after the
next time step as will now be shown. This idea is developed in one dimension
as follows. At time 0, the equivalence is exact, since mass is assigned based on
initial density and initial particle spacing. Writing Az in a general fashion as

Az = (z4 — z_.)/c; (for an appropriate constant c;) yields

D vy — U
(A7) = =

Cz
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and it can also be seen that

ﬂm)_mﬂl _ _mDbp _ m,
Dt\p) ~ Dt\p) =~ p2Dt — p

~here v’ is solved for using the SPH derivative. Now assume the relationship
holds exactly at time n and apply a time scheme. For example, use the basic

forward Euler method to find

Azl — Az 4 At ("* '”‘)

Cr

G) = G) 2 (e

But since Az™ = (2)" then

n+1 n
n+l E = n(v+_v-) _ E nn
Az (p) At [Ax Az (p) (v") }
v

n U+ — _ "nn
At Az [c,Aa:" (v) ]

ML

This shows that the difference between Az and m/p after one time step is equal
to the difference between two methods of calculating the velocity divergence.
When using the central space, ¢, = 2. So the first term in the brackets would
be a central difference form of the velocity divergence. This is second order for
uniform spacing, first order otherwise. So the term in brackets is the difference
between two derivative approximations, both at least first order. Hence, the
two volume elements differ after one time step by a term that is only O(Az?)

(higher order under some assumptions).

Consider if the relationship (equation (3.18)) is taken to be exactly equal for
all time. That is,
Azr

m
—. 3.19
P (3.19)




To ensure this is maintained, the computer program must either calculate mass
or density using this formula. If calculating mass using the formula, the density
is solved using either SPH density-by-summation or SPH continuity equation.
This is a relatively small change from standard SPH, but conservation of mass
is no longer guaranteed. If calculating density using the formula, mass is
taken as constant in time (as usual) and equation (3.19) is used to arrive at
density. In one dimension this is a minor change, but in higher dimensions the
cost to find AZ may be extremely expensive from a computational standpoint.
This is because, as shown later in this chapter, Delaunay triangulation is used

in proving consistency in higher dimensions. This is a expensive process to

implement, but required in some circumstances to ensure consistency.

Hence, using either of these two ideas, the equivalence of volume elements calculated

by the particle position or the field variables should be attainable.

3.4 Consistency Result

Consistency for the SPH approximation of a function and its derivative may

now be proved in general. First, define the following operators

[dentity Operator Tu = u
) o
Derivative Operator Pu = a_u
z

Kernel Operator

Ku({r,) = _/Qu(a:) W(z, — z,h)dz

N

SPH Operator Su(r,) = z i) u; W(z, — z;,h)
=1 Pi
N m.
SPH Derivative Operator S'u(zr,) = Z —Lu; W'(z, —z;,h)
1=1 pJ
where W' = &£ |

8o
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Lemma 1 (Consistency for the SPH Approximation) Given any function
u()z) € C*N); and given a kernel function, W, that is even, positive, normalized,
and kas compact support, then the SPH function approzimation is consistent with

the identity operator under the sup norm provided Az is equivalent to m/p.
Proof.
Hu—Sulle = |[Tu— Ku+ Ku — Sulle < ||Tu — Kulloo + ||Ku — Su|jo - (3.20)

Based on equations (3.3) and (3.4) obtain

[Hu(z) - Ku(z)]| [u(z) + Ex(u,2)]| = |Ek(u,z)|

lu(z) -
- |.;./ Yu'(E,) dz |
and from equation (3.6) obtain

|| Iu — Ku llos = sup|lu(z) — Ku(z)| = sup |Ex(u, )] < exh®. (3.21)
z€N zeN

The last term in equation (3.20) becomes

Ni .
Ku(z)-Su(z) = [w@W(z-)de - > L Wie~z)
j=1 FJ

= [uOWe-ede - 3 () wie -y

j=1

+ [

- ﬁ] u; Wiz —z;) .

J

But -';—:J- is the one dimensional volume (ie. distance) and can be taken to equal
(zj41 — zj-1)/2. It is taken as exactly equal in this proof, but can be bounded as

well based on results in the previous section. Therefore, the last sum is exactly equal
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...

to zero. From equation (3.17), Ku(z) — Su(z) = E,(u,z) and from equation (3.14),
[|Ku — Sullee = i\ég |Er(u,z)] < e, R M, . (3.22)
Thus combining equation (3.20) with equations (3.21) and (3.22) results in
Hu—Sulle < exh® +ehM,.

Noting from equations (3.5) and (3.13) that e, and e, are independent of & and M.
yields
Hu — Sullo — O as h, M; — 0.

a

Note: In the lemma u was required to be C?*(f2); however, it is sufficient to be C*(2)

provided u” exists and is bounded. This is because existence and boundedness was

all that was required in the proof and in equations (3.3) and (3.6).

Lemma 2 (Consistency of the SPH Derivative) Given any function u(X ) and
its derivative u'(X) where uw(X) € C3(N); and given a kernel function, W, that is
even, positive, normalized, C', and has compact support, then the SPH Derivative
Operator is consistent with the derivative operator under the sup norm provided Az

is equivalent to m/p.

Proof.
[|Pu—S"ul|leo = ||Pu—Ku'+Ku'—S'u||o < ||Pu—Ku'||oo+||Kt'— Syl . (3.23)

Based on equations (3.3) and (3.4) obtain

[Pu(z) — Ku'(z)] = |u'(z)—[u'(z)+ Ex(v,2)]| = [Ex(v,z)|
‘% /n 2W(=2,h)u"(t,) dz|
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and from equation (3.6), and the sentence following, obtain

| Pu - Ku'||o

sup |Pu(z) — Ku'(z)] = sup|Ex(u, )| < e h? (3.24)
€N €N

2

where e, = ’-;— sup |u"'(€)] . (3.25)
£eq

The last term in equation (3.23) becomes (using the compact support of W)

Ny
K'(e) - Su(e) = [w(OW(e-§d - L 2w Wiz-z)

j=1 PJ

= WOW(—Olan — [[u(E) W (e - €) e

— Z——u,W’x—rJ)

=1 Pi
Ny ms
= [w@wWe-0d - Ly, W(-g)
Jj=1 p;
N s
= [uowe-gd - 3 () uWe -2

+ Z [(;—-—) - —’;’—] u; Wiz —z;).

7

Once again, %’- is the one dimensional volume (ie. distance) and is taken to equal
(zj41 — z;-1)/2. As in the previous lemma, this term could also be bounded based

on results in the previous section. Therefore, the last sum is exactly equal to zero.

From equation (3.17), Ku'(z) — S'u(z) = E,(¥,z) and from equation (3.14),
HKu' — S'u|le = sup |E.(u',z)|] < el h M, (3.26)
where e, = % sup [[u(§)W'(z-8)]|. (3.27)

Thus combining equation (3.23) with equations (3.24) and (3.26) results in

|Pu— S'ullee < erh®+ elhM,.
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Noting from equations (3.25) and (3.27) that e and e, are independent of k and M,
yields

[|[Pu—S'ulle — O ash, M, - 0.

a

Note: In the lemma u was required to be C3(f2); however, it is sufficient to be C?(f)
provided u” exists and is bounded. This is because existence and boundedness was

all that was required in the proof and in equations (3.3) and (3.6).

3.5 Applying SPH/Linearizing

The primary equations used in hypervelocity impact are the Euler equations
of gas dynamics. These and the SPH semi-discrete forms for these (or at least one
version) are shown in Chapter II. Methods as to how SPH forms for these or any
other equations may be derived in a consistent manner are discussed. There are two
primary methods that should give comparable, yet slightly different, error terms.

These are the full equation method and the spatial derivative method.

1. Full Equation Method. This approach was introduced by Monaghan (36). It

involves taking a given equation, multiplying by the kernel, and then integrat-

ing both sides over all space. This equates to stating that if a and b satisfy

Da ab

Dt~ a4z’
then <Da> _ ab
Dt/ oz [
Applying the kernel approximation and corresponding error analysis on the left
side of the equation yields % back plus an error term. Similarly, applying the

particle approximation (including the integration-by-parts) and corresponding

error analysis to the right side of the equation yields the SPH semi-discrete
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form of the problem. This can be summarized as

N
Da _ _ z""b W, - E (-’;—‘t’,x.-) ~ E(bz). (3.28)
1=1

The notation W}; means W'(r; —z;), is standard in SPH, and is used through-
out the rest of this paper. The difficulty of this method comes when the right
side of the equation cannot be written as the derivative of some function. For
example,

Da ab

5 = 3. (3.29)

In this form, the integration-by-parts step cannot be used directly to move the
derivative from the function onto the kernel. A linearization step is usually
included to eliminate this difficulty. So for variables a, b, ¢ and linearization

error, E;, which is defined by

b b
Bo= o5) - (o52).
So, if

Da ab

_c_.__.

Dt o’
Da ab ab
then <T)7> —<c£> = —C<81:> + E,.

Now use integration-by-parts on the right side and apply the particle approxi-

mation. This situation is summarized as

Da N m; Da
= = S W - ( ,‘) - (b, z,) .
D c ,'E=1 o b; Wi E; D't + E cE, (b, z;)

(3.30)

Concern over the size of this linearization term led to the derivation of a second

method.
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2. Spatial Derivative Method. This approach does not deal with the entire equa-
tion, just the spatial derivatives. In the earlier parts of this chapter, the partial
derivative was shown to be equivalent to the SPH derivative plus some errors.
This relationship may be used and substituted directly into an equation. This

equates to stating that if a and b satisfy

Da ab

2= ..5;, (3.31)
then g—‘: = —}:m’b W' + E; (gb,:c,) — E.(bz). (3.32)

This result compares quite similarly with the full equation method found in
equation (3.28). In addition, with this method, if the right side of the equation
involves non-linear terms (such as (3.29)), no linearization step is done. Just
substitute into an equation the proper terms from the consistency analysis. So

for variables a, b, c, if

Da ab

Da N m; ab

— = —g w!. — ;) - (b, z;) . )
then D Ci ; 5, bW/, + cEx (az,z‘) cE.(bz;). (3.34)

Taking the differenc= between the two methods, eqn (3.30) - eqn (3.34) results in

 (Da 9b (b db
E = F, (Dt,:l!) + cE; (a,x,') = —F (Ca,l,) + cE; (%,x.) .

This shows that E; equals the difference between two O(h%, hAz) terms. So it is of
the same order as the error already in the method. This allows for the conclusion
that either method of developing the SPH form for the Euler equations is acceptable
and consistent. It can also be concluded that the concern over linearization error is

unfounded.
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One final note, consistency analysis is based on the assumptions of smooth
data. Applying a method in an area where there is a discontinuity could result in
E; being larger; showing a larger difference between the methods. The integration-
by-parts step that is performed in both methods introduces boundary errors in this
case and causes these differences. This comment is meant to emphasize the differ-
ence between the mathematical construct known as consistency and a real world
application. It also leads us to the next section on non-smooth functions and points
to one of the primary methods of controlling the errors near a discontinuity, artificial

viscosity (discussed at the end of this chapter).

3.6 Non-Smooth Functions

The lemmas given earlier in this chapter only applied when functions are suffi-
ciently smooth; which is the traditional definition of consistency. But it is not always
the case in actual calculations. There are at least two ways to resolve the question

of how to prove consistency when functions are not sufficiently smooth.

First, proceed as if the functions actually were smooth. Since nothing (or little)
is known about the function between particles, it is acceptable to simply assume the
function is smooth there. This has the effect of numerically solving a differential
equation for a slightly different problem: one with large gradients instead of shocks.
However, the consistency analysis of section 3.3 would directly apply and this is the
concept that is often taken. Also, in the limit as Az — 0 this smooth problem will

approach the discontinuous problem.

Second, derive an SPH form that allows for shocks while still being consistent.

The remainder of this section does just that.

3.6.1 Scalar Equations. The goal here is to develop a kernel approximation
and corresponding SPH particle approximation for u’(z,). This is a rather long and

tedious process, so the details are left out here and placed in Appendix A. Consider
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the interval shown in Figure 3.2. Let a < r, — kh and b > z, + kh. Assume
there exists an integrable discontinuity in the function, f(z), at d. For now assume

r, <d<b.

| |
| | |
a z, d b

Figure 3.2 Non-Smooth Data Consistency part 1

In section 3.1 a Taylor series expansion technique was used to develop the kernel
approximation. However, an expansion cannot be performed across a discontinuity,
so the interval [a, b] must be split into [a,d) and [d, b]. Let z, be a point in [d, b] and

perform expansions about z, and z; in their respective intervals to obtain

/abf(:c)W(zo—:c)da: = f(zo) + [f(z1)— f(=o ]/ o—c)dz +O(h) . (3.35)

Note that the second integral is only over part of the interval and therefore is not

equal to one. This implies for non-smooth data when z, — d
b
/f(x)W(JIa—a:)d:cﬂf(a:o) ash—0.

However, retaining the second term on the right-hand-side of equation (3.35) (~ Af)
allows for the method to be consistent (in the context of this section) and of order

O(h).

Now consider f(z) = u’(z), where v, u”, and u" exist everywhere except at d
and are bounded on [a,d) U (d, b]. Substitute into equation (3.35) and then integrate
by parts. Unlike earlier in section 3.3, the boundary terms (in this case across the

discontinuity) do not vanish. The results are
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u'(z,) = —[u'(z1) — v (zo)] /;b W(r, —r)dz + [u(d™) — u(d*)|W(z, — d)

+ [ ulz) Wiz, - 2)dz + O(h), (3.36)

where d~ and d* are the limits of d from the left and right respectively. Since r,
previously was chosen arbitrarily in [d, 8], now let z; = d . Expressions for u’(d) and
u(d™) must now be found. The expression for u'(d) is obtained in a similar process
to what was done so far while the expression for u(d™) is taken from a Taylor series

expansion around z,. The results are

, 1 b '
W) = | oW (e —d) = (1= 0)W(0)]] {/ u(@) PW(z, =)
—(1 = 0)(d — zo)W"(z, — z)] dz + [u(z,) — u(d)][W(z, — d)

—(1-6)W(0)]} + O(h) , (3.37)

where 6 is a measure of how close z, is to d defined by § = 2]:0 W(z, — z)dz

In Appendix A, further simplifications are made to obtain a particle approxi-
mation form of this equation; but that work is omitted here. Also consider the shock
on the other side of z, as shown in Figure 3.3 in the Appendix. This follows exactly
as in the first case, so all the steps are left out in this case and the reader is referred

to Appendix A.

a d Z, b

Figure 3.3 Non-Smooth Data Consistency part 2

Now combine the results contained in equations (A.1) - (A.21) and surrounding
work in the Appendix for a particle z; on either side of the discontinuity as follows:

Given z;, let d be the location of a discontinuity, z4 be the nearest particle on the
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opposite side of the discontinuity from z;, and use the usual format for the kernel

(W(z.h) = $ K(%). Provided z4 is quite close to d the results are

2, =4l
§ = -z/ " K(v)dv (3.38)
o
B = [Wia—(1-0)W,](zq— z;)sgn(zi — z4) (3.39)
N N

’ m; ' 1 m, ' 0

ulr;) = —u H/l*(_) —-—uB"V'— 1 —0)(za — 1z wi

t( ) ; p] J ¥ 0+ B {; pJ J[ ¥ ( )( d ) ]
_B(“f‘“c*)} , (3.10)

Ty — Td

Note that 0 < # <1 and to ensure 4 is well defined at the ends investigate equation

(3.40) near 0 and 1.

(i) As |z; — d| increases, ie. z; moves away from the shock, 8 increases until
lz; — d| = kh where 8 equals 1. At that point @ stays at 1 no matter how far z, gets
from d. From equation (3.40) if § — 1 then

N
, m; 1 >‘ , ( B )(u,-—ud)
D— Y i (—— ) W, )
v =1 PjuJ(I+B ARVEY:) A ey

But B also goes to 0 in this case since W has compact support. Therefore when

|z; — d| = kh, the correction term drops completely out and yields the smooth data

result

(ii) As z; — d, ie. z; moves towards the shock, 0 decreases to 0. 6 never
actually reaches 0 since z; cannot equal d under the assumptions, but it can get very
close. Therefore consider some of the terms as § — 0. Using equation (3.40), let

d=1z4=2z;+ch, h> e >0 and substituting to obtain
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gy ) N Wiz, - 1—0)(. b= 2) Wz — 2))
u'(z;) = 778 J_l—p;—uJ rj)+ | — ) (zi+eh -z (i —

0
B u(a:,) u(z; + ch)
*9 [ ~ (zi +¢h) ]} 34D
B = [W(z; - -—eh)—(l— OW(0)] (z; + eh — z;) sgn(z; — z; — ch)

= —ch[W(-ch) - (1 -0)W(0)].

Substituting B into equation (3.41) yields

u(z) = ! J i = [W’ + (1 "0> shW!'.}
1 - W(=eh) - (1-0)W(0)]} | = oy T 0 Y

+%(u(x;) —u(zi + eh)|[W(—eh) - (1 - 0)W°]} '

Expand the kernel in a Taylor series. This assumes the kernel has a Taylor series
expansion. Note: even if the kernel does not have a series expansion the analysis

after this will still follow, but it is just more confusing
W(—eh) = W(0) — ehW'(0) + -;-ethW"(O) +..

Substitute to find

e = 1 —_o [ wr
) = T - @wol { St + -0 ()

+u(z;) — u(z; + h)][W(0) —- fﬁW'(O)]} + O(?) .

From equation (3.38) and d = z; + ¢k, 6 becomes

6 =2 /0 " K(v)dv . (3.42)

Then @ — 0 as ¢ — 0, — — g as € — 0. It is necessary to know if ‘T" is bounded as
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¢ — 0. Use L'Hopital’s Rule to find % — gh;’ and by the Fundamental Theorem of

Calculus from equation (3.42), 3% = 2K (¢). Therefore

h 1

—_ =

2K () 2W(e)

= 5

Then add the requirement that K(u) -+ 0 as u — 0. For example if K(u) is a

polynomial it must include a constant term. So in conclusion, £ — o as € — 0.

Hence
X m, Wi Aug2W2(0) — W'(0
' m; ' ij ua (0) (0))
.. i |W, 3.43
wiz) — §, Py “’[ "+2W(0)]+ W (0) (343)
as T; — d where Auy = u(d*) —u(d™) .
Therefore, equations (3.38) - (3.40) are well defined at the limits of 4.
3.6.2 Fuler Equations. Using the consistent form of u’ just derived, new

SPH forms of the Euler equations for one dimension may be derived. As with all SPH
equations these are not unique, but simply one possibility. Note: in the equations to
follow, the notation uy implies the value of some field variable u at the closest point

of the opposite side of the shock from z;.

Continuity Equation:

b= —(pVF) = 5V — Ve(pi) = v — (pv)
o= o d 3T () |5 T BW, + (1 - )W)
‘ ' j=1 Pj 7y 6+ B j=1 #3 ’ Y “

sz

(zi — z4)
N
m; , 1 )
— oo W — [ ——
{Z P] pJvJ ¥} (0+B

_ plpivi - Pdvd)] }
o (zi — z4)

=1 FJ

N 1y ’ ”
) 7/’1”:‘(3“41 + (1 = 0)zassW;3)
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. N
Zm] — v, )W) ( . ) {Z (vi —v;)[BW, + (1 - 0)r ;W)

+de(—'—_ﬁl} . (3.44)
(I: - Id)

Note: if using the SPH density-by-summation form instead of the continuity equa-

tion, a correction is still required because

il

[ Wi~ )z = () +[fz0) - f(zo)]%(l -0).

1-8)\ .
> g = (5g) [ oW - o - (155) e
m, 1-6\ | & m;
SO flzi) = Z s —f;Wi; + (1+0) [Z o, —f; t]‘f(zd)} (3.45)

N
Hence p; = Zm i+ (1 +0) [Em, i — } {3.46)

=

An alternative to using f(z4) explicitly, is obtained by using equation (A.6):

Ll LI - [ fawies - )ia

Substitute this into equation (3.45) and simplify to find

N o o\ N
f(=z) > ﬁfjWij + (1_0_0) > T—nf’fj(Wij - Wg).  (347)

i=1 Pj =1 P
N

Hence pi = Y m;W,; - ( ) Y mj(za)W, (3.48)
=1 =1

Momentum Equation:

p p o p p
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N
m, ’ "
m) [E —Lpi(BW]; — (1 = )z W}))

;=1 Pi

|1
{
]
e Nt
M=
> |3
< :
=

lpJ p]

w2 (E- 2l
‘imf(%“L%)% (0+B){§ (P f)[B

+(1 = O)cu W] + _B (2P - Egz - ﬂ)} . (349)

N m. P, , 1 N m. , "
—{JZ Wi - (m) [Z L=L(BW + (1 - O)caW))

(zi —xq) \ pi p; pd

P_
¢ = —;Vv = —=(V-(pv) — 0:Vp) = —(=(pv) + vp')
. R L \/§
] ;mi(vivvj)m"_(m) {jg'lmi(”i—vj)[BWfﬁ(l—0)’"*"Wi'1"}
B
)] -
Also,

-pee ool o))
W, - (75) 5:'" 5

~2(BW. G+ (1= 0)zuW
1pJp( ( )z )

-m(%—%)]}

€;

il
,_/\q
k..

...
.P
;°

N N
m] P ’ ( 1 ) m] P ’ n
—_ ————v Wl“ —_ — ———"U BW 0 (u/‘
{Jg pips Y 0+ B Zl P; P J( t J2alVs)
(zi — za) Pi Pd
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. A Pj ' 1 Al Pj ’ "
& = ijT(vi*vj)Wij—(__) Y. mi—(vi — v,)[BW; + (1 - 8)zaiW])]

"

(3.51)

Average equations (3.50) and 3.51) to obtain

. 1& (P P , L Y]iss, (BB
(5 Do) om (5-2)

j=1 1=1

(o= ) (BW, + (1= )zl + ot (B2 P (o)

To actually apply these new SPH Euler equations, a shock capturing or detection
algorithm is required. In this way, 8 can be calculated for each particle at each time
step without having to track the shock, which is usually very expensive. See Chapter

VIII for more information on shock capturing techniques.

3.7 Higher Dimensions

So far in this dissertation, most of the consistency analysis has been performed
in one dimension. However, it can be extended to higher dimensions. Since the work

here is similar to that already done, many of the details will be omitted.

The analysis from section 3.1 on the Kernel Approximation is done in a straight-
forward manuer following exactly the same process. However, it involves using Taylor
series expansions for functions of more than one variable, which is a more compli-
cated process. It can be simplified by using the following notation (note: for two

dimensions terms involving z will not appear)

i = 7F=7 = (T—Zo, ¥ = Yo. 2 — 2,)
a 7] 17/
i .V = -7 )— ey ) (2 — 2. )—
u (z Io)az +(y yo)(?y +( Zo)az
9 o i
T-V? = — 2 — — Y ) e —_z V=
[U. ] (I J:0) 6172+2(I IO)(y yo)azay+ +(Z Za) 322
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Then obtain

i) = [ SO WE=FRdF = [+ D W(—i,h) di
= [ win [f2) + @ VIS0 + 317 VPAE) da

£(72) /9 W (=i, k) di
+ V() / W (=3, h) did

45 [ @ VPSE)W(-ab) i

If W is normalized, as shown in equation (3.2), then the integral in the first term

of the sum is 1. As in the one dimensional case, if W is a symmetric function, the

integral in the second term of the sum is 0, as is now shown. Let W(u, h) = %;K(l%l)

and then in two dimensions

/ﬂﬁW(—ﬁ,h) di = 7113//n 2K ('-‘Z—l) dz dy

where « is defined as before from the support of the kernel. That is,

] > kh.

&

J

kh  p2r
= %/ (rcosG,rsin0)K(-;;) rdf dr
o Jo

] r? K (%) dr

2

xh
= hlz-/o [(sinﬂ,—-cos&)

0

Similarly in three dimensions

W(-i,h) di = 7213///0 iK (l—';—') dz dy dz

= (03 0) ’

W (i) = 0 for

xh p2m pm
% '[) / /o (r cos @ sin ¢, rsin 8 sin ¢, rcosg) K (%) r?sin ¢ d¢ df dr
0

27

xh pm
%/ /[(sinﬂsinq&,—cosOsinqS,BcosqS)

=0

= [ [0.0,2rcos ) r*sing i (5 doar
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J M{(i) dr = (0,0,0).

0

1 xh
ﬁ/{, [(0,0,rsinz é)

Therefore. the result is

f(rs) = f(%) + Ew(f,75) (3.53)
where Ew(f,75) = -;— /Q[ﬂ-V]’f(EZ,)W(—a,h) di (3.54)
for £, € N .

To find a bound on the error term E(f,7;), define

k2d?

€ = 5 sup |D2f(f)| )
113

where d is the dimension (2 or 3) and D? means any second partial derivative (pure

and mixed):

B = 5 | [ @VRrE) Wi-a,h) da
< 5 [ REIDEN W (- ) di < [ g wi—a, 2%

< 3 [ EPEAEN W(=i,h)| i

2€k

= exh? /n W(—a.h)dd = exh?. (3.55)

The work in section 3.2 on the rectangular rule is also applicable to higher
dimensions, but it may not be as obvious. The following procedure is given for
two dimensions but easily generalizes to three dimensions. Given a set of particles,
triangulate the particles using a procedure known as Delaunay triangulation, ie.
create a triangular mesh with the particles as the vertices. Then create a Voronoi
polygon by placing a point at the centroid of each triangle. Connecting these points
around a given particle creates a convex polygon containing exactly one particle.
Further, this unique polygon has the property that any point inside it is closer to

the particle contained in it than to any other particle. If this procedure is carried
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out for all particles in a given region. the region will be completely covered with non-
overlapping convex polygons (CP). Note: for more details regarding this construction
see papers on Delaunay Triangulation and Voronoi Polygons, such as Baker (3),

Kennon (27), and Sloan (56). Figure 3.4 contains a diagram of this procedure.

® Particles 0 Points

Figure 3.4 2-D Particle Triangulation

To integrate over any of these convex polygons, create triangles with one vertex
at the particle of interest and the others at consecutive vertices along the boundary
of the convex polygon. Then use a composite rule integrating over each triangle.
Finally to integrate over the triangle map it to a right triangle and apply the one
dimensional Rectangle Rule twice (once in each direction). See Figure 3.5 for a
picture of this procedure. So for some domain 2, there are N, convex polygons

covering this domain and

//n,‘f(l',y)dzdy = i//;a f(z,y)dzdy .
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® Particle o Point

Figure 3.5 2-D Particle Convex Polygon

Then for any convex polygon, C P;, there are NT; triangles, T, within CP;, and

NT, NT,

[, Hendzdy = 3 [[ S pdedy = Slarf(ao) +el
= A;jf(z9;) + E;

where q; is the area of triangle 7; and A; = Zg’l a; is the area of the polygon around
the particle at (z;,y;).
Hence

Ni

N N
J.;//CP, flz, 5 dedy = Y [Aif(z;,y;) + Ej] = 3 A;if(z;,4;) + E .

=1 1=1

As in the one dimensional rule, A; (Az in one dimension) can be taken to equal %’-.

The error bound is

|E| < Nimax|E;| £ Ni mja.xlNTj mlax|el|| < N; mJaxlNTjMaM,eaI,
J
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where M, is the area of the largest triangle and e, is a small constant. Allowing for

NT N, M, ~ n h? k? and for some small constant ey

|E' S 64’12 M, .

3.8 Artificial Viscosity/Wall Heating

In many numerical methods, artificial viscosity and artificial heat conduction
{wall heating) are used to handle physical problems, especially near discontinuities.
This dissertation only address three forms of artificial viscosity and one form of wall
heating found in the published literature for SPH. In this section the techniques are
introduced for later use and while simply commenting that they are consistent. That
is, they vanish as A — 0. The details of the consistency analysis may be found in

Appendix A.

Starting with artificial viscosity, the three forms are attributed to: Monaghan,

et al. (37), Hernquist and Katz (19), and Lattanzio, et al. (28).

1. Monaghan. For the SPH form, in the momentum and energy equations

replace the f} term with pf,— + -;-H where the function Il;; = II(z;, z;) is defined by

—a0.5(c; + ¢j)pij + Bul;

I 0.5(p: + p;) (3.56)
h(vi — v)) - (z: — z;) ) (i — 2
i = (o=, + 72 (i = 0y) - (zi = 25) <0 (3.57)

0 otherwise .

In these equations c is the material speed of sound, 5 is a small constant (often
.01), and a and B are user specified parameters. These last two are sometimes
referred to as the artificial viscosity coefficients and are usually in the range [0.5, 3.0].

In Appendix A, the artificial viscosity term is shown to be consistent with (when
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2 <0)

ah @ [ dv] BRI aw\?

SO pZ | - () | 5

% 9z [CPB:::] 2p Oz [” (B:r) ] (3.38)
With the h factors present, this form will vanish as A — 0, maintaining the consis-
tency of the overall method.

2. Hernquist and Katz. For the SPH form, in the momentum and energy

equations replace the -:—;— term with f} + 311 where the function Il;; = M(z;,z;) is

defined by

4G , 94
I, = ;).'2_.{.;% (3.59)
hipici|V - vl; + BRI pi(V - v)? i—vj)(zi—z;) <0
S pici|V - vli + BhZpi(V - v) (vi — ;) - (2 — ;) (3.60)
0 otherwise
note : (V-.vu), = -p—}:mJ v; )W), .
v

In these equations c is the material speed of sound and a and B are user specified
parameters. These last two are sometimes referred to as the artificial viscosity coef-
ficients and are usually in the range [0.5,3.0]. In Appendix A the artificial viscosity

term is shown to be consistent with (when 3—2 < 0)

ﬁ,’f ( 61) . (3.61)

With the A factors present, this form will vanish as A — 0, maintaining the consis-

v
oz

ahc
p

tency of the overall method.

3. Lattanzio. This form is very similar to the Monaghan version Therefore, the
derivation should follow exactly as in the Monaghan case. In the SPH momentum

and energy equations replace the 5— term with f}(l + II) where the function II;; =
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[I(z;, r;) is defined by

L, = —au;+ B (3.62)
h(vi = v;) - (zi — ;) N

w, = { @—z)" k) (v = vi) e = 25) <0 (3.63)
0 otherwise .

In these equations c is the material speed of sound, 7 is a small constant (often .01),
and o« and 3 are user specified parameters. These last two are sometimes referred
to as the artificial viscosity coefficients and are usually in the range [0.5,3.0]. In

Appendix A the artificial viscosity term is shown to be consistent with (when g—: <0)

ah 8 [ .8v] PBA? O \?

—— |P=—=| - —=—|P| =— . 3.64

cp Oz 83:] c2p Oz [ (62) (364)
With the h factors present, this form will vanish as A — 0, maintaining the consis-

tency of the overall method.

4. Wall Heating. There is currently only one form in use, attributed to Mon-

aghan (41). To implement it, add an additional term H in the SPH energy, where

N
(g + ¢;) (& — ;) (zi — ;) .,
H,' = - m; VV: 3.65
LS55 ¥ ) (@ = 237+ k) (3.65)
g = Gihscs|V-v|,+ gghz(V . v)i (3.66)
1 /
(V-v), = —p—z m;(vs — v;)W,; .
3 3

In these equations c is the material speed of sound, 7 is a small constant (often .01),
and ¢, and g, are user specified parameters. These last two are sometimes referred to
as the wall heating coefficients and are usually in the range {0.25,1.5]. In Appendix

A the wall heating term is shown to be consistent with

%v (QVe). (3.67)
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The @ term contains factors proportional to h, so this term will vanish as A — 0,

maintaining the consistency of the overall method.

3.9 Summary

In this chapter, consistency of the SPH method was analyzed. The key re-
sults were the derivation of truncation error terms and the identification of bounds
for those terms. For SPH, as usually implemented, those bounds are of order
O(h%. hAz). This implies the numerical method will be close to the differential
equation for sufficiently small h and Az. There are two basic assumptions that went
into these results. First, that the function being approximated is smooth. Second,
that volume elements calculated by the particle position equal those calculated by
mass and density. This second assumption departs somewhat from standard SPH

and comments on how to control this assumption are included in the chapter.

In addition to the work just described, a second approach of proving consistcacy
was taken when the function being approximated has a discontinuity in it. This
results in the derivation of a first order SPH approximation that is consistent even

near a shock. Also in this chapter, the consistency of artificial viscosity and wall

heating terms were analyzed for later use.




IV. STABILITY

This chapter addresses the mathematical concept known as stability as it ap-
plies to SPH. Stability is essentially the study of error propagation in numerical
methods. As such, this is a natural continuation of the error analysis begun in the
previous chapter. Two different approaches are taken in this chapter to investigate

the stability of the semi-discrete (spatial) approximation. A semi-discrete approx-

imation is obtained by discretizing the conservation equation 2¢ = —[f(u)]; only
in space to obtain %‘f = —5(f(u)). The result is a system of ordinary differential

equations in time.

First, a linearized approach is taken in which an instability is indicated. This
approach develops an amplification matriz from the Euler equations by representing
the field variables as perturbations around equilibrium points. The system is lin-
earized in the perturbations allowing Fourier analysis to be performed. Assumptions
are made that the data is from a uniformly spaced, smooth data problem. From
this work, the resulting matrix equation is analyzed to determine if there are any
amplifications (or growths) in the perturbations. To keep the system well defined,
the eigenvalues of the amplification matrix must have non-positive real parts. This
form of stability analysis is closer to what Strikwerda (60:51) calls dynamic stability

than to numerical stability, but is just as important.

Second, a total variation approach is taken in which a new SPH formulation
is developed. The total variation approach is better than the linearized approach
for non-linear equations, but is much more difficult to apply. In fact, neither the
stability nor instability of common SPH forms can be determined with this. So, the
approach taken here is to develop a total variation stable version of SPH starting
from the basic one dimensional wave equation. This concept is then generalized for

use with the Euler equations.
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Although the two approaches differ in how to obtain stability, the goal of both
is the same: to analyze and comment on the stability (growth or errors) in SPH and

propose other forms that can alleviate any difficulties found by the research.

4.1 Linear Stability Analysis

This analysis is performed by taking a set of one dimensional SPH equations,
linearizing them, and investigating the properties of the eigenvalues from the result-
ing matrix equation. This work is performed in detail for one set of SPH equations
and then indicated how similar results are obtained for many other forms. All the
forms arrive at a similar unstable condition, indicating it is fairly fundamental prob-
lem in SPH. A note is made that another group of analysts first found this instability
and the work here extends and expands upon those findings. Finally in this section,
artificial viscosity and wall heating terms are reviewed as possible stabilizing effects
and found that they do not remove the fundamental instability. The results from

this section are used in the next section to propose stabilizing techniques.

4.1.1 Analysis Details.  The following are the one-dimensional set of SPH

equations used in this analysis (for a particle s)

N
ps = Z m; (vs — v;) W/s,j

=1
N
. PJ Ps) /
vy = — m;{ = + = | W,
,—.z-:l ’ (pf i)Y
1 & (P, P,)
€s = = m; {\ =5 + — | (vs—v;) W),
2]; J pJZ ,03 ( J) ]
Ty = U,. (4.1)
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Assume the field values may be accurately represented by perturbations (@, v, <, \)

around equilibrium points (g, 7. €, £) as follows

Ps = Ps+ &
Vs = Uyt
€s = €,+¢,
Ty, = To+ Xs- (1.2)

Then

35

N
53+¢a = Z mJ‘(l—),—l—)j-f-l/,—I/J‘)W,
i=1

Vs + Uy = —Z

P, P, ) ,
LS I W,
o <(pj + ;)2 (B +05)2) %

3

és+é li ( ki, b )(z’) B + vy — v;) W
s s = 3 m; - — s — Uy Vs — Vy sj

2 TN+ (ps+9)? ’ 11 W
To+Xs = Vs vs. (4.3)

Values for the kernel, W, and the pressure, P, at the perturbed points need to be

found. First, expand the kernel in a Taylor series as follows

W, = Wiz, —z;) = W'((Z —Z)+ (x: — xj))
= W'(&, - Z;) + (xs — x;) W"'(&, — Z;) + O(x%)

= W5+ (xs —x;) W5 + 0(X%) . (4.4)

For the pressure, consider, P = P(p,e), then pressure has the algebraic form: P =

A+ Bé + Ce where A = P(p,€) and B,C > 0. Further,

1 1 2

- ¥ 2
(p+e2 * 5 +0#9.
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This gives the algebraic form

P A+ Bo+Cs _ Y o
;)-é- = (_+ 2 ~ A+B¢+C€+O(¢v€)
where A =

C = (4.5)

Substitute equations (4.4) and (4.5) into equation (4.3), dropping 2nd and higher

order perturbation terms. This results in the following equations

M=

po+ 05 = m;(D, — 05 + vs — v;) (W5 + (xs — x5) W)
1=1
N N
= Ym0, —5)W5 + Y mi((vs —v) Wy
1=1 1=1
+(8s = 75) (xs — x5) Wil
N
63 + fjs = - Z m; (A] + B]¢] + stj + As + Bs¢a + C,E,) (W.!’-J + (Xs - XJ)W.:-;)
i=1
N N
= =3 mi(A+A)W5 — Y mi[(Big; + B,és) W
=1 =1

H(Cie + Coea) Wh + (A5 + A)(X = x5) Wil

L 1 N
& tés = 3 > m;(Aj+ Bjg; + Cie; + Ay + Byds + Coe ) (05 — U5 + vs — v;)
i=1
x(W5 + (xs — x3) Wi)
N 1 N
> mi(Aj+ A)(B, — ) W5 + 3 Y m;((B;¢; + B.o.)
i=t

1=1

DO | =

X (05 — ;) W;’J + (Cjzj + Coe5) (0, — 0;) Ws"j
H(A; + Ay)(vs — v;) WE + (Aj + A (s — 5)(xs — X5) W],

To+Xs = Us+ V. (4.6)




Now allow the equilibrium points (p. ¢, €, T) to satisfy the original set of equations

(4.1). Therefore, parts of the equations in (4.6) may be removed to obtain

A
O = Z m; [(I/,—VJ) W-_:‘]"}'(ﬁs_ﬁ])(xs_\])w};]
i=1
vy = = 3 my[(B;g; + Bed )W), + (Ciej + Coea) W + (A4 + Ad)(xs — x5 )WY

. L _ N un -
g = EZ mj[(Bj¢j+B,¢,)(v,-—vj)W;j+(C'j€,'+C',6,)(v,—vj)W~-

sj
+(A; + A)(vs — vj) W.:'] + (4; + A0 — 9;)(xs = ;) W;’;

Vs = Vs. (4.7)

This system is now linear in the perturbations so a Fourier analysis may be applied.

For this, let
_ isk _ tsk _ : L At
¢, = 9e¥%, v, = ve, g, = e, x, = xe,

where k = 2rAz/u, p is the wavelength, and ¢ = v/—1. Uniform spacing is being
required at this point. Imposing this requirement could be delayed until later, but the
notation would become quite ugly. Further, in the next subsection this assumption
is made anyway, so imposing it now does not change the analysis being performing.
So, substitute the above values into the previous equations and divide both sides of

the resulting equations by e'** to obtain

N

¢ = Z m; [(1 - e"("")k) v W,’-j + (3, — 9;) (1 — ei(j—a)k)x W,';]
=1
N : y . .
i = =3 myl(B,+ BieUmI) gWE + (C, + i) e W,
j=1

+(Aj + A)(1 — U=y y W]
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Z m,[(B, + B;e'U™%)(9, — 5,) 6 W}; + (C, + C;e'0=¥)(5, — 0;) e W

=1

(A + AN = UMYy WE 4 (A + AN, — 5;)(1 — e U7 W]

$J

o] —

N = V. (4.8)

These equations can be evaluated as is, but it is easier if some notational simplifi-
cations are made. These take advantage of the kernel having compact support and
require the kernel to be even. Let [ = j — s, then the sums in equation (4.8) change
fromj =1,N tol = —oco,00. Also W, = —W; = —W/ and W = W7 = W/
Also assume the mass is constant and can be factored out of the sums. Note: this
assumption is not necessary and is justified later on. Substituting into equation (4.8)

yields

6 = L_m i (1—e“k)W1'} v + [m i (Bs — Bot) (1 — &) Wzl':l X

I==00 l=—00

[ [ el o0
vo= |m Y (B,+B,+,e*'”=)w,'] 6 + [m Y (C,+C,+;ei"‘)W,'} e

L I=-—c0 l=—00

+ [—m i (As + Agp)(1 - e“k)Wl"} X

l=—00

e = I:"_zﬂ_l Z (Bs + Bs+le”k)(53 - ﬁ""")vvl,] ¢
{

==00

r o
+ —5@ 3" (C+ Cope™)(o, —v,+:)W,]

—00

RS (A,+A,+z)<1—e"’k)w,'] v
l=—00

T

2

+ = Y (As+ A (B — Depa)(1 - e'¥) Wl"] X

l=—00

X = v. (4.9)
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The following matrix equation can be obtained from the equations above: 0 =RU
where ' = [0 v ¢ y|T and the matrix R contains the terms in the brackets from
equation (4.9). This matrix is similar to the amplification matrix used in numerical
stability. Like numerical stability the eigenvalues of this matrix in dynamic stability
will provide the stability results: therefore, R is referred to as the amplification

matrix in subsequent work.

4.1.2 Smooth Data Analysis. Two important assumptions are made at this
time that are necessary to continue the analysis for smooth data. First, the data is
quite smooth. As long as the support of the kernel (k) is small enough, this is a valid
assumption for a limited period of time. To represent this, the equilibrium points
are taken to be constant inside the support of the kernel plus a small perturbation.
Since each particle already has a perturbation associated with it (¢, v, €, and x)
the definition of the perturbations is extended to include the spatial perturbations
as well as the temporal perturbations. The equilibrium points can then be taken
as constant inside the support of the kernel giving p; = p, v, = 0, €; = € for
any j within the support of W,;. Based on the algebraic notation defined earlier in
equation (4.53), A; = A, B; = B, and C; = C. This assumption is valid if A is small
enough, no shocks are present, and the data is very smooth. Equation (4.9) is then

simplified to

¢ = |-m f: (l—e“k)W,'] v

l=—00

v = [mB Y 1+ )W/ o+ |mC Y (1+e"")w,'} €
| I=~00 I=~00
+ [—277214 Z (l_exlk)v‘/‘ﬂ] X
i=~00
E = [-mA4 Y (1-e*W/| v
l=—00
X = v. (4.10)
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In order to simplify the analysis, some further algebraic substitutions are made. Let
G, = m Z (1 - ey w,
l=-0
G2 = m Z (1 + eilk) "‘/[’
l=-o0
G3 = m Z (1 _ eilk) vv'[ll )
I==00
The amplification matrix, R, is now
[ 0 S R
BG, 0 CGy; —2AG;
R = (4.11)
0 -AG, 0
| 0 1 0 0 |

The eigenvalues of R are determined by solving the characteristic 2qnation, det(R —

Al) = 0. For R as given in equation (4.11) the following must be soiv=d

A2 [v + ACG,Gy + BG, G, + 2AG3] =0,

which has solutions: A =0, 0, £,/—(AC + B) G, G, — 2AGs.

The second assumption under this subsection is uniform spacing. This turns
out to be not only useful in simplifying the equations, but based on the assumptions
up to this point, it is necessary. Previously the mass was assumed to be constant
and the field values were locally constant; in particular, 5 is locally constant. SPH

m

uses Az & 2, so Az; must be constant for all j. Using uniform spacing together

with an even kernel, G1, G2, G; may be simplified as

x>
~2im Y _ sin(lk) W]

=1

—im Y sin(ll)W] =

{=—00

G =
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Gy, = im Z sin(lk) W) = ‘Zistin(lk)W’,’

== =1

[o o} 2 o0 2
G\G, = m? (Z sin(lk)VV{) = 4m? (Z sin(lk)W,')

l=~00 =1
Gz = m Y (l—cos(lk))W' = 2m Y (1 — cos(lk)) W/ .
I=—0n0 I=1
The eigenvalues of R are now
A= 00%v-D (4.12)
where D = Dy + D, (4.13)
2 B . o0 2
D, = 4—;:— (AC + p*B - 2pA) (Z sin(lk) W,') (4.14)
=1
4 )
D, = —I;ZA 3 (1 — cos(lk)) W' . (4.15)
=1

For the analysis to be complete all values of k € [0, 7] must be considered.
However, the k equal to 7 case is going to be concentrated on at this time. There
are two reasons for this. First, for non-linear equations, linearized stability is only
a necessary condition for global stability, not a sufficient condition. In other words,
an instability found in the linearized analysis is sufficient for the actual method to
be unstable. Second, the £ = 7 case corresponds to the minimum wavelength (or
highest frequency) case. This is often where problems in numerical methods arise.

So, letting k equal =, equations (4.14) and (4.15) reduce to

D = 0 (4.16)

dm . & 8m . &
D, = ZLAY(-(-1WW = A Y WL (1)
p =1 p I=1,0dd

Based on equation (4.12), R will have a positive real eigenvalue if D is real and D < 0.
In this case, D = D,. Also recall from earlier, A = P, the pressure at the equilibrium

points. Because m and p are always positive, the sign of D is controlled by PW".
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For most of the popular kernels (bell shaped), W” has both positive and negative
parts. Hence, the method could be unstable in either tension or compression. Note:

from conversations with other analysts the problems are more pronounced in tension

(P <0).

Also note, Appendix B looks into the D, term shown in equation (4.14) above in
more detail. In particular, this equation is studied for two equations of state: the
Ideal Gas Law and the Mie-Griineisen. From that analysis the D, term is found to
usually be non-negative for any wavelength. Hence, this term can help to stabilize
the method for some wavelengths and for others does not help nor hinder stability.
Therefore, efforts concentrated on the D; term are most important, as it is the

primary source of the numerical instability in the method.

4.1.3 Reconciliation with Other Analyses.  Although the work in this chap-
ter was performed independently, two other groups that performed stability analyses
on SPH (neither is currently available in the published literature). In this subsec-
tion, the results just found in this dissertation are shown to correspond to each of

the other groups results under appropriate simplifications.

1. Petschek and Libersky (PL). See reference (49) for more information. They

assumed P = P(p) only, allowing them to uncouple and discard the energy equation

from the analysis. From equation (4.11) remove the third row and column from R

to obtain
0 -G 0
Rpr=| BG, 0 —24G; | - (4.18)
0 1 0

Note: PL start with slightly different forms of the SPH equations, but they reduce

to the same as the one presented earlier under the assumptions in the analysis. The
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eigenvalues of Rpy, are: A =0,+\/-D, where D = D, + D; and

oo 2
D, = 4n’B (Z sin(lk)VV,'> = 4m?BS? (4.19)

I==1

D, = 2mA (Z 2W" — " 2cos(lk) W,") = 2mA(2Q -2C). (4.20)
= =

The notation at the end of equations (4.19) and (4.20) is from the PL paper, showing

that their form and the one in this dissertation match under appropriate assumptions.

2. Swegle, Hicks, and Attaway (SHA). See references (64, 65) for more infor-

mation. As with Petschek and Libersky, Swegle, Hicks and Attaway also assumed
P = P(p) only, allowing them to uncouple and discard the energy equation from the
analysis. Further, they assumed early on in their analysis that density was constant,
allowing them to discard the continuity equation as well. This may sound like they
performed a weak analysis, however, the opposite is true. The analysis is quite thor-
ough and bears reading for those interested in more information on the linearized
stability analysis. From equation (4.11) remove the first and third rows and columns

from R to obtain

0 -24G
Rspa = L . (4.21)

The eigenvalues of Rgy4 are: A = +/—D;, where

D, = m%é E(l —cos(lk)W/ = - g; > (1 = cos(lk)) W,

=1

The notation at the end of the equation is from the SHA paper, showing that the
their form and the one from this dissertation match under appropriate assumptions.
Note: their paper uses T = — P, the stress tensor positive in tension where this paper
uses negative. This explains the sign differences. Their form will also not match this
one exactly, since SHA performed their analysis on a fully discretized problem (using

central time) and this one only does a semi-discrete problem.
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4.1.4 Other Fquations.

In the previous subsection, the analysis performed

in this dissertation was shown to appear like that performed by otlier analysts under

appropriate simplifications. In this subsection, the analysis from earlier in the chap-

ter is extended to many different forms of the SPH equations, not just the popular

ones. The forms considered are shown in equations (4.22) - (4.34):

Ps

Ps

Us

Us

Vs

€s

€s

Z,

T,

N
> my(v, —v;) W,

J=1
JV
m;
Ps Z ’_,J(Us - v;) Ws’j
1=1 2
N
P; P, ,
- m (‘% —2) W,;
N PjP.s
J=l pJp-’
P‘
-2 m ( _J ) W;;
_7'=1 P]Pa
N
P, + P
=1 PiPs
N
2 m

i=1 Psp;
N P.
> m; —;) (v —v;) W;
1=1 p]
1 ¥ (P, P,)
= m —= + — U, v)Ws'
™ ) W
5 my L
m vy — U; :
J:] ! p]ps ’ o

4-12

(4.27)
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(4.29)
(4.30)

(4.31)

(4.32)
(4.33)

(4.34)




Equations (4.22), (4.24), (4.31), and (4.33) make up the system already studied. For
the remainder of the equations the detailed analysis is found in Appendix B. It may
be easily summarized by stating: under the assumptions for smooth data analysis. all
the forms of the SPH equations above reduce to those found in the earlier analysis
(except for form (4.34)). Therefore, the instabilities tound in those earlier forms
also are instabilities for these other forms. Hence, it is reasonable to expect that
techniques to resolve the instabilities in one form also are just as universal. More

on form (4.34) in the Techriques for Obtaining Linearized Stability Section (Section
1.2).

4.1.5 Artificial Viscosity/Wall Heating.  In many numerical methods, ar-
tificial viscosity and artificial heat conduction (wall heating) are used to handle
physical problems, especially near discontinuities. However, they are also used to
control or assist in stabilizing a method. As discussed earlier, the SPH forms used
for the Euler equations can be unstable regardless of the values of At, h, or Ar.
So it is reasonable to question whether these techniques can stabilize SPH; which is
done here. All of these techniques were first introduced in Chapter III showing that

they vanish as h — 0.

Starting with artificial viscosity, only those forms found in the published liter-
ature for SPH are considered. The three forms are attributed to: Monaghan, et al.

(37), Hernquist and Katz (19), and Lattanzio, et al. (28).

1. Monaghan, et al. See equations (3.56)—(3.58). In the SPH momentum and

energy equations replace the p% term with pf,- + 111 where

~ 0 0.5(c, + ¢ ) + Bu,

s 0.5(ps + p;) (433)
h(vs = v;) - (2, — 7;) Y
by = (zs — .l’j)2 Tkt (vs —v5) - (2, — z;) <0 (4.36)

0 otherwise .
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For stability, the previous analysis (labeled old below) is valid as is with just the
correction terms — 3, m;1I,;W; in the momentum equation and } 5", m,Il,,(v, —
v,)W;, in the energy equation. If Il,; = [, + ,; then for the momentum equation.

the linearized correction term is

N
—Z m; I, W, = —Z m; (I, + T (W5 + (xs - GIWS)
=1 1=1
N
= =3 m; [, W) + 7, W5 + I, (x, — ;)W
J=1
N —_
= ilnew) = vy(old) = Y m; [mWh + I, (xa — ,)W2] . (437)
=1

For the energy equation, the linearized correction term is

1 ¢ AR _
5 2 milly(vs —v)W,, = =3 m (Il + 74,)(5s = B0, — j)
==t 1=1

x (W5 + (xs — x;)W5)

D] —

™ [H,,(v, - UJ)W + m(0s — 0;) W

[\’]2

!
2 -

.
1l
-

+H3j(l7 - 17j)W"’ + i (xs — Xi)W,,‘;]

= é(new) = é,(old)+ = zm, [723(52 — )W + I, (5, — 7;) W,
]*1
+H5(xs — x;)WE] - (4.38)

So the I1,; aid ,; terms need to now be studied. The intermediate steps in deriving
these are left out as they just follow the preious stability analyses. Using p;; as p
at the equilibrium points, then

—a0.5(cs + ¢j)us; + Bug

I1,;
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[a 0.5(cs + ¢;)ug, — 3;;3—12
T, =

0.5(p, + 4, )? ](®’+¢’)

—a0.5(¢cs + ¢;) + 3ug,
0.3(ps + p;)
[ —a0.5(¢c, + ¢;) +d“u] [ h(8, — ¥;)
)
2

05P3+p1 ,(js_i1)2+7’h2
Zh(v,-—v 183 ,—x, 2]
((£5 — £;)? + nh?)

Under the smooth data analysis, pg; = 0. This causes most of these new terms to

vanish leaving

fl, = 0

_ —ach(z, — 1) _
T = [ﬁ((i,—ij)2+nh2)](',’ i)

Therefore, with the smooth data assumptions,

vs{new)

4(old) — ZmJ [ —ach( 3)2 +57;;12)] (vs — v )W (4.39)

Es(new) = £,(old) + 0.

2. Hernquist and Katz. See equations (3.59)—(3.61). In the SPH momentum

and energy equations replace the > term with P %H where

_ 49 | q;
I,; = p_§ + ;Jz- (4.40)
ahypsc,|V - v|, + Bhip, 2 if (v —v;)-(zs—1z2;)<0
" = psCs|V - vy + BhIp,(V - v)? if ( i) ( i) (4.41)
0 otherwise
N
us = ps(V-v)y = — ij(v, —v))W,, . (4.42)
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For stability, the work for this method is the same as for the first few steps of the
Monaghan method leading to equations (4.37) and (4.38). Hence. II,, and r,, must
also be found for this method. Once again. several of the intermediate steps are left

out as they just follow the previous analyses:

ac,hps + Jhy? N acjhu; + 3hy?

m, = - -
! Ps p;
acshpus + Fhu? achpu; + 3’1#;2 ac,h + 23hy;
‘TSJ = - - 03 - = o] + _
Ps P ps
\Y; _
~ Vs Uk v vy Ve ’ Uy — T -"
W’ o, - 2 Yy s — &)W
kz;l - [ gt k0 T o W s o e ) Sk]
ac,h + 23hu 3 ‘ v, — Vk..,
N [_JT__J ka o, — —
v, — Uk
~-2 p_j (XJ - \k)WJ,_;;] .

With the smooth data assumptions, 5 = 0. This causes most of these new terms

once again to vanish leaving

M, = 0

—ach & ,
Ty, = E my [(u, —ve)Wh + (v; — )W ]
k=1

Therefore. with the smooth data assumptions,

. ; ) N —ach "
vs(new) = v,(old) — ij — ka s — vk ) Wh
J=1
Wi W,—J- (4.43)

ss(new) = é€,(old) + 0.
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3. Lattanzio, et al. See equations (3.62)-(3.64). In the SPH momentum and

energy equations replace the 5 term with ;,P-(l + IT) where

I, = —au, + /3;13] (1.44)
h(vs = vj) - (z, — 7;) ~
> f(vy—v;) - (z,— ;) <0
by = c((z, — 2;)* + nh*) (v =0;)- (2, = 2) (4.45)
0 otherwise .

For stability, the previous analysis is valid as is with correction terms: — 3, m; (’;} +
P, . . .

;‘;(-) I1,,W,, in the momentum equation and: 13 m; (% + %) IL,;(vs — v;)W,; in
the energy equation. If I,; = fI,j + 7,; then for the momentum equation, the

linearized correction term is

N P_, P] , N
_ij ;{‘f"‘f najW_gj = -ij(As+Bs¢s+C.sEs+Aj+Bj¢j+Cj€j)
=1 s bl jrl
x(My; + 7)) (W} + (xs — ;)W)
= v(new) = p,(old)[l + Il ;] — Zm, (Aj + AT ;W[ . (4.46)

j=1

For the energy equation, the correction term is

1 N P’ })J , 1 N

:iszH’] —2' + _2 (’U, —vJ)WJJ = '2’2 J(AS+ B’¢’+C’E’+AJ
=1 ps p] i=1

+ Bjo; + Cie;)(ILj + m45) (0 = Bjvs = v;) (W5 + (X2 — x;)W5)

= éynew) = éold)[l+ M|+ %Z mi(A; + A)ry (8, — TIWY . (4.47)

i=1

So the II,; and ,; terms need to now be studied. The intermediate steps are left
out again as they just follow the previous stability analyses. Using ug; as p at the

equilibrium points, then

ﬂsi = —al‘;j+»3ﬂ3'j
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o (-—a+‘zau,-,)(f,-f,)h](u_ V)+[(—a+25#,}')(f’s—l—’1)h
v c((z, — ;)2 + nh?) Y c((Z, — 7;)? + nh?)
2(53_‘2))2

X [1 - ((1—.3 —_ 51)2 + nhz)} (Xs - )(J') .

With the smooth data assumptions, u;; = 0. This causes most of these new terms

to cancel leaving

i, = 0
—ah(z, — ;)

Tos = [c((i, -Z;) + nh?)] s =2s).

Therefore, with the smooth data assumptions,

—ah(f, - i‘j)
c((Zs — 7;)? + nh?)

N
vs(new) = v,(old) — 2A2mj[

=1

] (vs —v;)W,; (4.48)

Es(new) = £E,(old) + 0.

4. Summary of artificial viscosity techniques. All three forms studied here

reduce to similar forms under smooth data analysis assumptions. Namely, a term is
added in the momentum equation in the v position which is laveled R,. This gives

a new amplification matrix R

r -

0 -G, 0 0
BG CG, —-2AG
R= 2 R 2 . (4.49)
0 -AG, 0 0
| 0 1 0 0 |

The eigenvalues of the new R are: A = 0,0, 52"- + \/%3- — (AC + B)G1G, — 2AGs3.
Without any more study of R, for each of the methods, some general comments can
be made, remembering that (AC + B)G1G; + 2AG3 < 0. If R, is real, this does

not stabilize the method. If R, is positive an eigenvalue with a positive real part
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is obtained. If R, is negative it could make the positive real part of the eigenvalue
caused by the 2.4G3 term (instability) smaller, but does not remove it. Alternatively,
if R, is imaginary or complex with a negative real part it could stabilize the method.
However. the only way to get an imaginary part is from the term e'*. But. at the
minimum wavelength, k equals © which removes the imaginary part. This implies

that none of these methods help at (or near) the minimum wavelength.

For completeness, the Monaghan and Lattanzio methods result in real R,
terms, which should be negative. The Hernquist and Katz method should result
in R, being complex. However, it is a very complicated form and appears that the
real part can have both positive and negative parts depending on particle position

and kernel. These are shown below

achm & (Zs — ;) ~
Monaghan: R, = —— - 1 1 - yw’
& p ,_z_:oo (Z, — 2;)? el Wi
achm & [X : : ; .
Hernquist: R, = - Z [Z [ e’("-’)k)W;ﬁ + (e:lk _ et(n—s)k)WJ(_n]] W/
P l==00 Ln=
ah2Am &

(z, - z,) itk 11
— &)Wy .
'a—fj)2+nh2)(1 e )W,

Lattanzio: R,

I

'M

oy
8

5. Wall Heating. As described in Chapter III, the wall heating term, H is
added to the energy equation outside the sums. See equations (3.65)-(3.67). So the

stability terms have the form

Es(new) = é,(old) + H, ,

where
N A
H, = Z m; Hj (450)
j=1
o (‘b"‘%)(es e;) (¢, — ;) ' =
H, = W 4.51
= 000 + 3) (7s — 2,7 F 1k (451)
¢ = hgic+hiq(|V-vi—V-v). (4.52)
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1 1 1 _ 2, — 1) (s — \y)

.1'31 (-Es—IJ+\a \1)2 (Ia_’j‘,))z ('i's_i.l)“
L 1 1 (e,t9)
ps + p; (Ps — Pj + @5 — @) ps— i (Ps— ;)%
So for Hj obtain
o 1 (¢s+¢) = = 1
H = 2(q,+q)(_ — — — _")(e,—e'+s,—s)(—t—~—_—
! NP =i (ps —5;)? ! (g - )

A\s — X ) ~ v 1
._((‘ w-(J))(~7f's—1'1'*'f‘(s-)U)(‘/‘/s}"*'(“’_‘(j)‘/‘/"'_-’)

(és"éJ) ia"-ij) / (éa éj)('i's—jJ) '
= 2(q,+ -~ — —— W, — — - — — s + &)W,
(%% 4) [(ps—pJ) z,— ;)2 ¥ (m—m)’(h-%)"’w W
(_s - I; 1 2(63 - éj)(is - 3_31) ]
+ s W;' - 72 - — s W_,
(Ps + P;)(Zs — 51)2(6 ©) 7(ps + PJ)(xa - zj)a(x w) !
(é, " éj) ’ (6, — éj)(is — ‘ij) "
s wZ s we
Gt e 5 G e T
(é, eJ) ' (e-’ éj) 1
= 2 s + y - Y _ _ s 7= — Py — s + Ws_'
(4 + o) [(,,, S EREn LR Pas T en SR
1 ’ (és — éj) /
+ — s— & )Ws — — — — s — X)W,
et =5 = Y T GG, — g ke T X
(éa - éj) "
—vawr| . _
MO AEREER R 59
The following is needed for the ¢ terms:
1 N
(V-v)y, = —— ij(vs - v,-)W,']
Ps j=1
1 N 1 "
= - (ﬁs + ¢s) J-Z_.;mj(l’ = U+ v, = Vj)(Ws_j + (Xa - Xj)ws}')
1 ¢a N - ] (]
= —-—ﬁ— —ﬁ—z z:lm}[(( - J)W -+(V,—UJ')W'
s 3 1=

+(, = ;)(xs — \J)LV.::;]
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1 N ’ ) 4 1 o
= ____ij( W +Zm1 d),W - —{v, —VJ)W.U
Ps =1 3 p-’
_(u,ﬁ—v,-)(Y -x,)W”] _ (4.54)

Substitute equation (4.54) in equation (4.53) for ¢, then update the H analysis to

obtain

+(es — ;) WE — %f:"-—_—éf—))(x, — X)W + (& — &) (xs xa')Ws'?]

+[ . 2(?: "_éj) . WS’]] i

(s + P;)(Z, — xj)

m
¥ ] s

5y — B 1
m; [gv_s'_v_l‘bswl‘ - ﬁ_(”a - "n)Ws"n

LIt P Xn)W”] '
ps

Applying the smooth data assumptions, most terms drop out, leaving

1 ’
HJ' = 2(2hg16) ((ﬁ +ﬁj)(_ —1_:_,')) (6,—5j)W

2 2hgic ( — S )) W,

p(Z, — Z;
—2hgiem & [ 1-¢'k )
[ p JEOO((— - ;) Wl]

Apply uniform spacing and label the result Ry to use in the amplification matrix

so H,

Ry = [4hglcz( °°s(”°)) w,] : (4.55)
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The Ry term is added in the energy equation in the ¢ position giving a new ampli-

fication matrix R

[ 0 -G, 0 0 1
BG, 0 CG, -2AG;
R = . (4.56)
0 —-AG; Ry 0
i 0 1 0 0 |

To find the eigenvalues of the new R, a 4th degree polynomial equation must be

solved. The characteristic equation is
A [/\3 + A (=Ry) + M(AC + B)G,G; + 2AG3) — (BRyGG, + QARHG:;)] =0.

This requires finding the roots of a cubic equation. Using Mathematica the roots
were found to be extremely complicated. However, upon investigating this equation
further, for the minimum wavelength case, the PW" condition is still sufficient to
cause an instability. However, due to the complicated nature of the eigenvalues, no

additional general statements can be made about the wall heating term.

4.2  Techniques for Obtaining Linear Stability

In the previous section several commonly used implementations of SPH for
the Euler equations were shown to have an instability arise. The key element is a
term whose sign is controlled by PW". This term needs to be always non-negative
or else the amplification matrix cannot be guaranteed to have a non-positive real
eigenvalue. In this section, four methods are introduced that can be applied to
control the stability. They consist of (1) using concave up or concave down kernels,
(2) adding a constant to the pressure (two variations), (3) using a pressure difference

form (two variations), (4) making a particle motion correction.

4.2.1 Technique I - Concave Up/Down Kernels.  From earlier, the eigen-
values of the amplification matrix, R, were: A = 0,0,++/—D, where D = Dy + D,
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and

2 . . (& 2
D, = 4;: (AC + p*B — 25 A) (Z sin(lk)W/> (4.57)
i=1
D, = :_—zn/i > (1 = cos(lk)) W' . (4.58)
=1

At minimum wavelength, k equals =, D, = 0 and D; « AW”. Recall that A =
P(p,€). Therefore

if P, <0 Vs then choose W such that W"” <0

if P, >0 Vs then choose W such that W” > 0.

These requirements will ensure stability, at least at minimum wavelengths. For the
second derivative of the kernel to be of one sign, use either concave down kernels
(referred to in Chapter VI as parabolic shaped) for W"” < 0 or concave up kernels
(referred to in Chapter VI as hyperbolic shaped) for W” > 0. It is possible to use
other shaped kernels (such as bell shaped), but only if supported particles are not
too extreme (too close or too far away) and particle motion is small. If this later case
is used, a check in the solution algorithm should be included to stop when unstable

conditions arise.

In Chapter VI, bell shaped kernels are shown to give better results and these
other shapes poorer. So although this technique works for problems with constant
signed pressure, it trades stability for accuracy. If a large number of particles are
used (small kb and small Az), this is a reasonable trade. Since, the stability should
allow the algorithm to run longer and probably converge to an actual solution; and
accuracy is improved with more particles. However, if particles are sparsely spaced,
the inaccuracies of the kernel used in this technique probably outweigh the stabilizing

effects and other techniques should be sought.
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Hence the advantages of this method are that it requires no change to the equations,
maintains conservation, and stabilizes the method. The disadvantages are that it
can only be applied for problems with constant signed pressure and a new (possibly

less accurate) kernel must be used.

4.2.2 Technique 2 - Add a Constant to the Pressure in the Momentum Equa-
tion. In the momentum equation, if a constant is added to the pressure term.
the effect is to add a zero term plus O(A?) to the final SPH momentum equations as

shown below:

Dv 1 P P

5= v = v(G) - (5 459
P — P4+P, (4.60)
Do Llywpspy) = ~tvp-lup = _lup. ey
Dt p P P p

So adding a constant, P,, results in no change to the actual differential equation.
Note: P, can also be a function of time only and not change these results; this might
be more advantageous in actual implementations. As with equation (4.59), the chain

rule may be applied to the P, term to obtain
Dv P P P P,
— = |-Vi{=]-[= - =212 .
Dt [ (ﬂ) (P’)Vp]+[ V(p) (ﬂ’)vp]
Label the additional term in the momentum equation as F', and obtain
F o= -v(ﬂ’_)_(%)w = 0
p p

i‘mj((P 0)i . (Po)s )V,W,j = -P, zm,( :2) V.W,; . (4.62)

Jj=1 P; p, j=1 s

So adding F, to the SPH momentum equation is equivalent to adding 0+ O(h?%, hAz).

Further for symmetric kernels
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1
7) V_,W,J = 0.

s

N
S mF, = PSS mam, (,,.

s=1 s=1 =1

Hence, for symmetric kernels, F, does not change the momentum conservation. From

earlier in stability, use equation (4.10) for the momentum equation

v =

m B f: (1+e""°)w,'] ¢ + [mC f: (1+e‘“=)w,'] c

I=-00 l=—00

+ [_QmA i (1 ——em‘) W',"] X - (4.63)

l=—00

Consider F, perturbed, removing the constant term

] 1
F, = —P, § WL+ (xs — X;)W2
z;m’(pﬁ%) +(p,+¢,)2)( 3 06 = xi)W)
N Py 1 "
= 283 m ( ) - P ZmJ( - )(x:—x:-)W;,-
j=1 j pa ps
P f: ( 1 - s)k) wel o
* B =1 s p] *
al 1 i(j—9)k "
P,y m, )(1—eJ we | x
ZMi\G T

Under locally smooth assumptions, the following terms are added to the momentum

equation in the amplification matrix (4.63)

o) -9 el .
2P :lk)u/ll o+ ':2Po alk)vvln X
p l_—oo p =—00

Earlier in equations (4.12)-(4.13) the eigenvalues of the amplification matrix, R, were

shown as

Mold) = 0,0.+y/-D; - Dy,

where D, and D; are giden in equations (4.14) and (4.15). Now using this stabilizing

technique, the eigenvalues of R have the same form as before, but with D, and D,
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defined as

1m? .. . . 0 2
Dy = ;: (AC + ﬁ"’B - 2p(A+ P,)) (Z sin(lk) W,’) (4.64)
=1
im - > "
D, = ?(A+PO)Z(1~cos(lk))W,. (1.65)
=1

The key change is the A + P, term in D, where only A was before. This allows for

two choices:

1. P, > 0. Choose P, > — min,(/i,,O) in order to keep the pressure term always
positive. However, this then requires the use of a concave up kernel (hyperbolic
shaped) so that W” > 0. This ensures that D, > 0. One side effect is that
D, is made more negative (more unstable). This should not be a problem, but

might deserve monitoring.

2. P, < 0. Choose P, < —max,(A,,0) in order to keep the pressure term al-
ways negative. However, this then requires the use of a concave down kernel
(parabolic shaped) so that W” < 0. This ensures that D, > 0. In addition a

good side effect is that D, is made more positive (more stable).

So the advantages of this method are that it allows continued use of symmetric
equations, maintains conservation, can be applied for problems with pressure of
either sign, and stabilizes the method. The disadvantage is that a new (possibly less

accurate) kernel must be used.

4.2.3 Technique 2a - Add a Constant to the Pressure in the Energy Equation.

In Technique 2, a constant is added to the pressure term in the momentum equation.
A similar change can be made to the energy equation. The reasons to do this are
to keep the momentum and energy equations in agreement with one another and to
help the D; term if needed. However, it is more difficult to see that this is consistent
since the pressure term does not occur inside a derivative in the differential equation.

So instead of deriving the SPH energy equation directly from the internal energy
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differential equation, derive the SPH form from the total energy equation and the

SPH momentum equation. Define

__n.p
" pt  p?
. P,
Ty; = Oy + p-2‘+ p2
s £
Dv
Dt’ - _me"v

Starting with the total energy conservation form

N 1
Y (mye, + 5 ™Ms U?) = constant
s=1
D [X I N
E ; (mses + 5772,1)3)] = Zl(ms
N De, N
E m’ Dt = - Z m’ v,
s=1 =1
N N

= Z Z m,m; &_,]' 6,°V,W,j

s=1 j=1

2
2z

S]’

(4.66)

= ZZ ™M, 0js @-Vjo,

j=1s=1

2
2

= ZZ msm; 5‘,,’ 17,'(—V,W,j) .

=1 =1

(4.67)

This last step assumes an even kernel. Now average equations (4.66) and (4.67) to

obtain
N De, 1 N N
Y m, D = 3 Y m, Y m;é; (U — 7;)-V. W, . (4.68)
=1 s=1 =1
So now define
De,
D = 3 Z m; Gsj (Us — U;) - V,W,; . (4.69)

J—l

For stability, the D, term is the same as in Technique 2; but the D, terin is different.

In Technique 2, a term with —2pP, is added. In this addition to Technique 2, a term
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with CP, is added. So putting Technique 2 and Technique 2a together, the D, term

is redefined as

Dy(new) = D(old) + —’;(é - 25)G, G, .

2
4

)

This new term is usually negative for the two EOS studied, making D; more stable.

So the advantages of this method are that it allows continued use of symmetric
equations, maintains conservation, can be applied for problems with pressure of
either sign, keeps the energy and momentum equations in agreement, and stabilizes
the method. The disadvantage is that a new (possibly less accurate) kernel must be

used.

4.2.4 Technique 3 - A Pressure Difference Form in the Momentum Equation.
In the momentum equation, add a term that has pressure times the gradient of
a constant. This results in adding zero plus O(h?) to the final SPH momentum

equations as shown below

Dv _ 1yp = _v(f) _ (E)Vp (4.70)
Dt P p P2

Dv _ _v(f) _ (f) v, + Ly (4.71)
Dt P P2 p

Label this additional term in the momentum equation as F, and obtain

2P

F = —V1I =0
p
N —
F, ~ - ij (—2—&) V,W,; . (4.72)
j=1 Ps Pj

So adding F, to the SPH momentum equation is equivalent to adding 0+O(h?, hAz).
This form cannot be guaranteed to exactly conserve momentum. However, the sta-

bility analysis is performed under smooth data assumptions. In particular, if the
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pressure varies only slightly within the support of the kernel, the loss of conservation
should be on the same order as the method itself. From earlier for stability. using

equation (4.10) for the momentum equation

v =

m B i (1+e”")W,’] ¢ + [mC i (1+e‘“‘)W,’} €

(== ==

+ [_)m4 Z :lk W"] , (473)

{=—00

Consider F, perturbed, removing the constant term

N ~2(A, + B,6, 4+ C,e )]
F, = - m; A 2oV (WE + (xs — x5)WE
E { (P; + 0;)(Ps + @) (W5 + (e =) Woy)
N .
2A 24 2B
Fs = - m; = —s s - _¢ —— Ps
z=:1 J[(PZP;’ Pspf ’ PsP J¢)
2C 24
— e WL ~ 2(xs — x;)WZ
psbi ¥ ﬁaﬁj(x xi) ”]

N 24, 28, 2A, ,
- {-zm,(-z- AL

PiP;  PsPj " P2

[ ZmJ — ] [ Zm, — -e‘(j"’)k)Ws'-;] X -

j= Ps P; j=1 Ps Pj

Under locally smooth assumptions, the following terms are added to the momentum

equation in the amplification matrix (4.73)

2 A x -2 B 0 00
=m > (1 +efyw, — ' ¢ + ]
l=-00 P I=—o0 I=-o00
24 & .
+ p2 m ) (1 _ e"‘)“’,”] X

From section 4.1, in which a stabilizing technique was not used, the eigenvalues of

the amplification matrix, R, were
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Mold) = 0.0.+\/-D, — D, .

where D, and D; are given in equations (4.14) and (4.15). Now using this stabilizing

technique. the eigenvalues of R have the same form as before, but with D, and D,

defined as

/ 0 2
D, = Am’ (AC + 5*B) (Z sin(lk) W,’) (4.74)

ﬁ4 =1
D, = 0. (4.75)

The key change is that the troublesome D; term is removed completely. The D,
term also changed, but should still not be a problem. See Appendix B.2 for a

further discussion of the D; term.

So the advantages of this method are that it allows continued use of symmetric equa-
tions, continued use of tk~ same kernel, can be applied for problems with pressure of
either sign (easily). and stabilizes the method. '{'he disadvantage is that momentum

conservation may be lost.

4.2.5 lechnique 3a - A Pressure Difference Form in the Energy Equation.
As was done with Technique 2, a change similar to Technique 3 can be added
to the energy equation. The reasons to do this are to keep the momentum and-
energy equations in agreement with one another and to help the D, term if needed.
However, it is more difficult to see that this is consistent since the pressure term
does not occur inside a derivative in the differential equation. So instead of deriving
the SPH energy equation from the internal energy differential equation, derive the
SPH form from the total energy 2quaticn and the SPH momentum equation as was
done in Technique 2a. Define
P, P
+ =2

2
J

Tg3 = —5
* p: = p?
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. 2P,
T,
sy

Dv,

N
Dt = - ij 6,J' V,W,J .

=1

Starting with the total energy conservation form

N 1
Y (mee, + 5 Ms 5?) = constant .
s=1
D [X 1 N Dv,
= s = 3-‘ == 0
Dt s=lmes + 2ms ] z;( +m Us* Dt)
N N N
Z m,— = - Z m,'l-).,' —Z mj&,jV,W,,-
s=1 s=1 1=1
N N
= 35 mym;5,; 0, VW, (4.76)
s=1 j=1
N N
= Y Y. mjm,d;0;-V;Wj,
1=1s=1
N N
= Y3 mym;Gj05+(—V,W,;) . (4.77)

s=1j=1
Therefore, average equations (4.76) and (4.77) to obtain

N De 1 X N
z m, Dt’ = 'é- Lm, Z m; (&,j z‘;’,-—&,-,z';‘j)-V,W,j

s=1

s=1 =1
1 X P, %, — P; ¥; -
_52 m; ————-——p p'J ]°V,W,J‘] . (418)
i=1 sV
So define

De 1 Y N P,v, PJ{)‘J)
s _ 04 (Ty — 0;) V,W, m V.W,; . (4.79
i 2?:_:lm]a,(v ;) V,W,; E J( "3 i (4.79)
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This implies the additional term, F, for the energy equation is

N -~ ey
~“Ym, (M) VW, . (4.80)
j=1 Ps Py

For stability of this method, consider F, perturbed, with the constant term removed

Fo= i m, [(/i, + B,y + Coe,) (B, + vs) — (A; + B;d; + Cje;)(; + ,,j)]
J=1

(ﬁj + ¢J)(ﬁa + ¢a)
x(W5 + (xs — x;)W5)

N . e . .
Z A, v, — A;0; A0, — A;U;
j=1 PsP; PsP;

+ (B,f),d), —__Bji}jd)j) n (A,V};.}ijl/j) + (és'{’sea—‘:éjﬁjej)] ’,_J
3K

J
/‘i,l_), - /ij-j) ,,} }
+ —_ s — Xi W;.
[( Psp; (x X3) J

_ N ' ~,l_), — /ijl_)_,' + ﬁij‘l—)J /i U, — /ij‘l_)j - _,é,‘l_), '
s,

/i,u, - fijt/j) N ( sUsEg — C;v;e;
-y m | ———— | WL - ) m; 177 ) WL
Z J ( Pst 83 ; 2 i 33

‘—T—) (xs — X)W .

Under locally smooth assumptions, most of the terms vanish and only the following

term needs to be added to the energy equation in the amplification matrix

m Z (1 tlk)vvll] ¢

I=-00

With the addition of this term, the characteristic equation becomes

/\[/\3 (f—f) (AC + p*B) - (fa) (Béa)] = 0.
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As with the wall heating term this equation does not yield simple eigenvalues. But,
at minimum wavelength G, = 0 so the eigenvalues are all zero. For other than the
minimum wavelength case, this form of the equations does not permit any general

comments.

So the advantages of this method are that it allows continued use of symmetric
equations, keeps energy and momentum equations in agreement, and can be applied
for problems with pressure of either sign. The disadvantages are that conservation
may be lost and with the complicated eigenvalues stability is difficult to determine
for certain. In fact, since the technique can only guarantee non-positive real parts of
the eigenvalues for the minimum wavelength, it would be more appropriate to refer

to this as less unstable or conditionally stable.

4.2.6 Technique 4 - Particle Motion Correction. As noted earlier in this
chapter, and detailed in Appendix B, the following form of the particle motion

equation can have a stabilizing effect

N
v; -V
T, = vy + € m; —J———’—) W,, = v,—€eAv. 4.81)
Pt ’(0-s(p,+p,-> ’ (

This equation was originally proposed by Monaghan (41, 43) to solve a prob-
lem with streaming; where particles from one material unphysically penetrate into
another in a collision. Although artificial viscosity helped the situation, it did not
remove it in all cases. Similarly, artificial viscosity can make the eigenvalues of the
amplification matrix smaller, but cannot stabilize the method. Further, this form
was proposed for streaming because the velocity field may not be single-valued in
SPH and using the usual £ = v equation can result in incorrect particle movement.
This last notion also applies in the stability case. The velocity is not properly cal-
culated (in a stability sense) causing the particle movement to be incorrect unless a

correction term is added.
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From the material in Appendix B leading up to equations (B.15) and (B.16), the
eigenvalues of amplification matrix using this technique are A\ = 0,0, +/— D, where
D = D, + D, and

2 . . ) 2
D, = im (AC + p*B — 25 A) (Z sin{lk) W,’) (4.82)

nd
P =1

D, = A %n- io:(l — cos(lk)) W,"] [1 - eL;— i(l — cos(lk)) Wl] . (4.83)
i=1

=1

At minimum wavelength, k equals 7, so D; = 0 and D; x AW"(1 — 2¢). The
stability analysis was already performed in Appendix B, but three questions remain:
Is this correction consistent, conservative, and how big does ¢ have to be to ensure
stability?

1. Consistency. Use the following:

z2 z?
Vs—V; = Uy — (v, — 3:,]1) + —élvllJr_ ) = l‘ajvf, _ sJ ”+O(h2)
2 2 2 | R p’) 2
- = = -—+—’(—i +O(R?),
ps + pj Ps+(ps — Tsjpy +--7)  2ps—Tyipy+--  ps 2 \p? (%)

to obtain

Vs = Uj vi) (v.’,p’, vi’) z5 2
— ) = z4; + — =} 28 4 ohY).
(0'5(/’3 + Pj)) (ps 7 Pl Ps) 2 (%)

Using the information above, the additional term becomes

N
Vg — U,
Av = m; —’—J—) m( ):c W,
,g ’(0-5(pa+pj) 2 "\o,) 7
vip, v\ 5
+Eom (S 5) S

vr) N (vlpl U") N
m;z + | === - = m;z:. W,
(p’ z=: ¥ sJ 2P3 2;03 E 1%

4-34




Investigating the sums in the above equation yields

N N N
ijx,]-W,] = z,Zm,W,j - ZmJIjW,j R I, < P> —<ZIypy> = 0
1=1 =1 1=1

N N N N

22 W, = p2 W . W.. 22
> mry W, = z2) m;W,, — 2z, > myz; Wi + m;z;W,;
J=1 1=1 i=1

=1

2

rf<p,>—2:l:,<r,p,>+<1:3p,> ~ 0.

Therefore, the Av (additional term) term is equal to zero within the order of the

method. This implies it is a consistent technique.
2. Conservation. For conservation of momentum note

N N N
zm,i', = Zm,(v,—eAv) = Zm,v,
s=1 s=1

s=1

N N v, — v; N
e 23 mm (GFE ) Wy = Someo, + 0.

s=1 j=1 05 (p3 + pJ) s=1

So adding the eAv term to the SPH particle motion equation is equivalent to adding

0 4+ O(h?, hAz) and for symmetric kernels maintains momentum conservation.

3. Magnitude of the € Factor. Concentrating on the troublesome D, term, ¢

needs to be large enough so that 2AG;(1 — e%’*) > 0. By definition, p and G5 are

non-negative. So, consider two cases:

a. PW"” > 0. This implies 2AG3 > 0. Then ¢ needs to be small, in order that
1 - e%-" > 0. Although more analysis can be performed, the easiest solution is just

to let € be zero in this case.

b. PW"” < 0. This implies 2AG; < 0. Then ¢ needs to be large enough for

1- e% < 0 to hold. For the Qp.-’* factor note that

> f:(l — cos(lk)) W, .
I=

G5 2m
3

—
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At minimum wavelength that term approaches 2 as Az — 0 and at k£ = %, it
approaches 1 as Ar — 0. This implies for the lower wavelengths, ¢ can be quite
reasonable, around | as long as Ar is sufficiently small. In fact, based on some
tests for the popular B-Spline kernel, for Az < 1.4h (rather large), a value for € of
5 stabilizes the minimum wavelengths. If the particles are guaranteed to be more
tightly spaced, the value for € can decrease, approaching 0.5 in the limit. To be able
to stabilize wavelengths up to k = 7, double the value selected for e. Considering
the small values often used for h, these values for € are still reasonable. A problem
with this rechnique is that as particle spacing becomes more sparse, ¢ needs to be
increased. However, for spacing much larger than Az = h, the accuracy becomes
quite poor as shown in Chapter VI. Hence, it seems reasonable not to worry about

stabilizing the method when it is highly inaccurate.

A more significant concern with this method is that it does not work for all wave-
lengths. This is because as £ — 0, G5 — 0. And although it is not a problem when

k is exactly zero (since Gj is also zero), it is for all other small values of k.

So the advantages of this method are that it allows continued use of symmetric
equations, keeps energy and momentum equations in agreement, can be applied for
problems with pressure of either sign, and maintains conservation. The disadvantage
is that it only works for lower wavelengths. Since this removes the instability from
higher frequencies (lower wavelengths), this might be more appropriately referred
to as a high frequency filter. However, that does not indicate the stability process.
So using the terms less unstable or conditionally stable from the previous technique

might be more appropriate.

4.2.7 Some Computational Results. Based on the work in this section and
Chapter VI, I feel that Technique 3a - A Pressure Difference Form and Technique
4 - Particle Motion Correction are the best possibilities. The first few techniques

are still valid, but in Chapter VI the concave up kernels (hyperbolic shaped) and
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concave down kernels (parabolic shaped) are shown to be not nearly as accurate as

bell shaped kernels, so those will not be considered at this time.

In this subsection a one dimensional stability test is performed, similar to
one proposed by Swegle (63) (the concept is the same as Swegle’s, but some of
the parameter settings are different). The initial setup is a line of 2300 particles
contained in the interval [ - 90,140 | with 2~ = 0.15 and Az = 2h/3. The material
chosen is Aluminum that has an ambient density of 2.71 gm/cc. All particles are
given the following initial settings: p, = 2.57,e, = 1 x 1078 v, = 0.0. The initial
density is about 95% of the ambient density, implying the material is in tension.
Using the Mie - Grineisen equation of state the initial pressure is -.0425 everywhere.
Then one particle in the middle of the line is perturbed by giving it an initial velocity
of 107%; all other values of the perturbed particle are unchanged. Other important
settings include using the W-4 B-Spline kernel, using central time, a CFL factor

(ccrr) of 0.3, and time step calculated by

At = CCFL\/h2/‘02+C§

where c, is the speed of sound.

Without any artificial damping terms, the perturbation should cause a wave to
travel in both directions while the velocity of the perturbed particle to decrease (in
absolute value) with time. A baseline test case is performed using the settings above
and a standard SPH formulation. The calculation is then repeated using Techniques
3a and 4. Plots of the pressure and velocity for each of the calculations at 25 usec

are shown below in Figures 4.1-4.3.

In the baseline, the velocity perturbation obviously is seen not to decrease with
time, but grown tremendously. Further, the perturbation has also caused a growth
in pressure. Upon applying either of the two stability enhancements the growth is

removed. In both, the growth is completely eliminated (at least to plotting accuracy)

4-37




Pressure vs. X

*10° ~————— Calculation
.2 Max Pressure = -0.018887
4
. Min Pressure = -0.050643
.3 NP = 2300
o
3 - Time = 25.00
$ -
& lter = 418
-5— 3 Baseli
rr o1 1 1 111 17T 71 1tT71 seline
10 20 30 40
X-Coordinates
Velocity vs. X
Calculation
N Max Velocity = 0.016903
1 Min Velocity = -0.015866
0.01
i NP = 2300
> .
© i Time = 25.00
§ %07
> _ lter = 418
-0.01 3
—|1 1 71 1 1 I'Illﬁ’lll]_ Baseline
10 20 30 40
X-Coordinates

Figure 4.1 Baseline Stability Results
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Pressure vs. X
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Figure 4.2 Technique 3a Stability Results
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Pressure vs. X
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Figure 4.3 Technique 4 Stability Results
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for velocity. In Technique 4, there is a little more noise (especially in pressure), but
it is not even to the accuracy of the plot. A comparison of the velocities over time

is shown in Figure 4.4

Log (Abs (v)! Velociry for Perturbed Particle
A / 3
B 10 s 26 5 T
7.5 b Baseline
-10 b
12.5 p A \\ A With Stability Corrections
) WA
W M'Mh‘”\\* )
17.5
o}

Figure 4.4 Velocity Stability Comparisons

The baseline has an exponential growth of velocity (plotting is on a log scale), while
the others slowly decrease over time. This shows the unstable nature of the baseline
and stabilizing nature of the techniques 3a and 4. Also note that both techniques
maintained conservation of volume, momentum,. and energy exactly. This should

help to alleviate some of the concerns over Technique 3a maintaining conservation.

In addition to the tests shown here, tests were performed with spacing of
Az = h and initial perturbation velocities of 10~ and 10-8. The results for all
the runs were similar. The amount of growth and the time scales were somewhat
different, but the bottom line is the baseline grows exponentially while the stabilizing

techniques do not.
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4.3 Total Variation Analysis

In this section the concept of total variation stability is introduced. Much of
the analysis in this chapter so far is based on concepts dealing with linear equations.
This allows many simplifications and makes the analysis easier. However, the linear
approximation is valid for non-linear problems locally. That is. as long as perturba-
tions are generally small in a given space and time domain around any point. the
analysis holds. If these assumptions do not hold, or that is too restrictive, other
definitions of stability must be found. One such definition is total variation stability.
A good summary for this as applied in finite differences may be found in LeVeque

(32).

The approach taken in this section is to develop two total variation stable
versions of SPH starting from the basic one dimensional wave equation. In particular,
the versions developed here are monotone schemes. A comment is then made as
to how this concept can be generalized for use a general conservation equation.

However, first a few notes on this relatively new concept.

The basic idea in total variation stability is to bound the total variation of
the numerical solution. Conceptually, that means to bound the amount that errors
can grow, a basic tenet of stability. For this reason, total variation stability and
total variation bounded (TVB) are used interchangeably. There are two equivalent

definitions of total variation (at least)

N
TV(u) = Z:lu(zm)-u(zs)l («.84)
TV(y) = /_°:° /()| dz . (4.85)

The first definition is for discrete functions and the second for continuous functions.

These 1deas can also be extended to functicns of both space and time as

4-42




TVr(u) = limsup- // u(z + e, t) — u(z, t)| dr dt

«e—0

+ limsup - / / (r,t+¢€)—u(z,t)|dedt. (4.86)

e—0

A subset of TVB methods known as total variation diminishing (TVD) methods
were actually developed first. They are also more prevalent in the literature. TVD

methods were introduced about 12 years ago by Harten (17). A numerical scheme,

ul*t! = H(ul), is known as TVD if
TV(@™) < TV(u").

Other good sources on TVD methods are: Harten (18), LeVeque and Goodman (31),
Osher and Chakravarthy (48), and Shu (54). In addition to TVD there are several
other categories of TVB methods, each one a subset of the previous ending with
monotone methods. Monotune methods are quite smooth and stable, but as shown
by Harten, et al. (16) they are only first order accurate. So there is a stability versus

accuracy concern for monotone methods.

As a way of introducing the total variation ideas to SPH, two monotone meth-
ods are developed in this dissertation. In the hierarchy given by LeVeque, these
methods will also be /; contracting, TVD, and TVB. The two SPH monotone meth-

ods being proposed are: the Lax-Friedrichs and a General monotone SPH.

4.3.1 Laz-Friedrichs.  This notion is derived fully in Chapter VII, so only
the formula will be given at this time. For the one dimensional wave equation

u; + auy =0,

ult! ZAx,u W, — aAtZAz,u Wi, . (4.87)

i=1 1=1
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Note: W and W do not have to be the same kernel. To show this method is

monotone, let H(u;) be the right hand side of equation (4.87) and then show

IH(u,;
A(u)?_o Yk u.
du}
For this method
OH .
5 A.l'k W,‘k —aAt A.l'k "V,-’J .
d'uk

When k£ = :, the results are

oH
aum

= Az,Wo—aAtAJ:.-W; > 0,

since W is taken as 0 (at least in all the kernels in Chapter VI) and W, is positive.

Alsofor k=j #iand W >0,

IH i ’ 1 VV:IJ
du” = Azr; (Wi —aAtWy;) = Az;W; {1 - adt ol
Wil . B Wh| _ jeat
_4 < = 1 i < |22 )
If ,W'q < 3 then [aAt W, S| h B| ,

where B is a constant to be discussed at the end of this section. So, choose At < ;’-‘5

to obtain

dH

ou? ~ 0.

Hence, the SPH Lax-Friedrichs method (4.87) is monotone for the wave equation.
The restriction on At is similar to the famous Courant-Friedrichs-Lewy (CFL) con-
dition. It specifies the values At can take not only to be monotone, but to en-
sure non-physical particle movement does not occur (such as particles crossing in
one dimension). This result can be extended to the general conservation equation
ue+[f(u)]: = 0 by letting a(u) = f’(u) and rewriting the equation as u;+a(u)u; = 0.

In this case, At must be chosen such that “—&hléi < % to obtain the monotone results.
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Although the SPH Lax-Friedrichs method given above was shown to be mono-
tone, in SPH a difference form of the SPH derivative is often used. So now a similar
Lax-Friedrichs form can be derived for these methods. Let u be the function to be

solved for and v be some other differentiable function then

(vu) = v + v'u
1
$0 v o= —=[uv - (vu)]
v
/ Al vi r!
then u'(z;) =~ —ZAzj—(ui—uj)V -
€ V: .
=1 :

Note that v can be a constant function, in which case this reduces to simply adding

zero to u’, to within the order of the method. For the field term use
1
u(a:,-) X —<vu>; & ZA.‘EJ'—'U.]'W,']'
u(z;) =~ —-<v>. = ZA:I:_, #u;mj
S0 u(z;) =~ E Az; Y% (M) Wi .

Then the Lax-Friedrichs type form for this SPH formulation is

n+l N v; U?+U? = ' -
ul = ZA.’E]';}-; 5 Wi + aAtZAa:J o (uf —uf)Wj; . (4.88)

j=1

Let H(u;) be the right hand side of equation (4.88) and investigate its monotonicity:

oH Az, - al v; (W

= 'w RN IRAAV] tW'
Bur 5 o+jz=:lArJ . ( 5 + aA ,J)
8H Ax_,-vj =
ou? 2v; (W, aAtVV")

J
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W! = 0 is assumed to obtain the above equations. For this case choose At < '2%5 to

obtain

oM

n
3uJ-

This new requirement on At is half the original requirement (CFL number). Other
Lax-Friedrichs type formulations are possible in SPH, but they are not developed in
this dissertation. Instead, attention will now be given to the next type of monotone

method.

4.3.2 General Monotone SPH Scheme. In this scheme zero is added, to
within the order of the method, to an SPH formula to obtain a monotone method.
Start with the one dimensional wave equation again, u; + au, = 0. Use the following

forward time, SPH (in difference form) space

N
u*' = Wl + aAtY Ag;(u} —u}) W, (4.89)

1=1
Also use the following approximations

N
u(z;) X <u>; xR Z A:tj uj VV,'J'

Jj=1

N -—
u(:c;) = <]l >; o Z A:L'j U; "V,'j
=1
N -_—

- Z AIJ‘ (u;_ - u_,') VV,']' . (490)

=1

Q

SO 0

Add equation (4.90) to equation (4.89), noting that W and W do not have to be the

same kernel, to obtain the new scheme

)

N N
urt! = u; — Z Az (ul — u;‘) VV,'J' + aAtZ Az; (‘u? - U?) "V,'J . (4.91)

j=1 =1
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Let H(u;) be the right hand side of equation (4.91) and show that it is monotone

OH

N N
au? = 1 - ZA.?)J"’V,'J' + aAtZAer,-j + Az, W, .

1=1 1=1

The first sum is approximately 1 and is exactly 1 as h,Az — 0. So 1 minus this
sum is an O(h? hAz) term. The second sum is approximately 0 and is exactly
zero as h, Ar — 0 or if the particles are uniformly spaced and the kernel is even.
This leaves the W, term which is positive and should be larger than the O(h%, hAx)
terms. The second partial derivative term (for 7 # ¢) is the same as for the original

Lax-Friedrichs method

= Az (W —aAtW)).

So this term will be positive under the same CFL condition given earlier, namely

a it 1
h SB

4.3.3 Kernels Ratio. A bound (B) on the ratio of the two kernels was used

several times in this section and is now addressed in more detail here. Writing the

kernel as W(z,h) = ; K(£), the desired bound is

K'(u)

) B. (4.92)

A natural question to ask is what happens if the two kernels are taken to be
the same. For the most part the ratio provides a good bound, but as u — xh, the
denominator will approach zero since the kernel is compactly supported. Even if the
derivative also has compact support, using L’Hopital’s Rule shows that that B — oo.
This will cause At — 0 to ensure monotonicity. However, from an implementatinn
point of view, if particle separation can be ensured not to cause a particle to be close

to the edge of the support, the same kernel can be used.
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A better idea is to use two different kernels. In Chapter VI, 18 kernels are
studied, several of which are quite good and should give similar results. Since the
denominator approaches zero near the support of K, K’ needs to have compact
support. In addition, K’ should not be zero near xh. This can be generalized
by requiring K to have compact support one derivative level higher than A. To
demonstrate this idea, use the B-Spline and Quartic-1 kernels for K and the Q-
Gaussian and T-Gaussian kernels for K. The definition of each of these kernels is
found in Table 6.2 in Chapter VI. Define B(u) = —K'(u)/K(u) and consider only
u € [0,2]. The results are shown in Table 4.1.

K K B(2) [ B=maxB |uatmax |1/B |
Quartic-1 | Q-Gaussian | 0.0 | 7.272706 | 1.735403 | 0.1375
Quartic-1 | T-Gaussian | 0.0 | 3.449569 | 1.567588 | 0.289891
B-Spline | Q-Gaussian | 0.0 | 4.541915 | 1.675131 | 0.220171
B-Spline | T-Gaussian | 0.0 | 2.493523 | 1.325998 | 0.401039

Table 4.1 Examples of Kernels Ratio

As shown in the table, the ratio of two different kernels is well defined at all values.
The last column (1/B) gives the CFL number. Note that for these examples 1/B is

less than 1; but this number is not too low, especially for the last example.

4.4 Summary

The material in this chapter addressed the stability question from two sides.
First, the linearized analysis addressed the question of the stability of current SPH
schemes. Upon finding an unstable condition, four techniques were proposed to
resolve that difficulty. Actually, techniques 1, 2, 2a, and 3 are all stabilizing without
any restriction on the wavelength while techniques 3a and 4 are only conditionally
stable. Second, the total variation analysis addressed the question of what is a highly

stable SPH scheme. The best SPH scheme probably lies somewhere between the two.
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The linearized analysis does not take the non-linearities of the equations into
account and tries to minimize the changes necessary to obtain stability. This is
because stability is often viewed as the opposite of accuracy, which is frequently
not true. Also, because the current versions of SPH apparently do not have serious
difficulties due to stability, only minor changes might be needed. This approach
:hould assist the SPH users immediately. The cost of this approach is not considering
inajor changes that might allow for better stability while maintaining accuracy (and

conservation).

The total variation approach provides the opposite extreme. New schemes were
developed, and these traded accuracy for significantly improved stability. Although
these new schemes will probably not be used by themselves they are useful in hybrid
schemes (see Chapter VIII), provide a stability baseline, introduce total variation

notions to SPH, and provide the ability to “window-in” on the best methods.
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V. CONVERGENCE

In this chapter, the consistency and stability results of the previous two chap-
ters are used to obtain convergence results for SPH. Convergence is probably the
most important concept in numerical analysis since it addresses how close a numeri-
cal solution is to the actual solution. Usually convergence theorems are proven using

consistency and stability results; and that is the approach taken here.

In this chapter, a convergence theorem, taken from finite differences, is ex-
tended to SPH through the statement and proof of three new lemmas. The first
lemma is used when only considering the kernel approximation. The second lemma
is used for the entire SPH method, but assumes the function is at least piecewise
continuous. The third lemma is an extension of the second when the function is only
piecewise constant. Since these lemmas use the consistency results from Chapter
III, they have the same restrictions as noted there. However, the most restrictive
assumption, that Az is equal to m/p is actually not important in the first two lem-
mas. Most of the work described here is based on the work of Lax and Wendroff
(29). A good summary of convergence results for finite differences may be found in

LeVeque (32).

The first section of this chapter details the convergence results from finite
differences in a rather general fashion. The second section then states and proves
the three lemmas allowing the finite difference work to be extended to SPH. To start,

consider the initial value problem for the general conservation equation:

u+ f(u) = 0 (5.1)
u(z,0) = wuo(z). (5.2)

5.1 Finite Difference Approach

Consider the finite difference method written in conservation form
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e At = F(VG) = (V™5 = 1] (5.3)

J

where F(V";j) is the numerical flux function more completely written F(V

I-p?
Vipe1r -+ V/y,) for some p > 0 and ¢ > 1.

Definition 6 (Weak Solution) u(z,t) is a weak solution of the conservation law

(5.1) if the following holds for all test functions ¢(z,t) € CH(R x R¥)

'/Ooo_/;Z[¢zu+¢:f(u)]dxdt = -/ #(z,0) u(z,0) dz (5.4)

A discussion of weak and classical solutions to the general conservation equation is
included in Chapter II; see that section for more information and references. The
main theorem of this chapter is the Lax-Wendroff Theorem. The proof is not included
here, but the three lemmas derived from this theorem later in this chapter are proved

in a similar manner. See Lax (29) for the original proof.

Theorem 1 (Lax-Wendroff) Let Va;ai(z,t) be a solution of (5.3), consistent
with (5.1). Assume Vazai(z,t) = V(z,t) as Az, At — 0, where the convergence is
in a bounded a.e. sense. Then V(z,t) is a weak solution of (5.1)-(5.2).

Although Lax and Wendroff are not specific about what they mean by “con-

vergence in a bounded a.e. sense,” it is defined in this dissertation as follows:

Definition 7 A sequence of Lebesque measurable functions, {f;}, defined on a space
L, converges in a bounded almost everywhere (a.c.) sense to f if |fi(z)| < M(z) a.e
and imi f; = f a.e. using (the norm for ().

(Reference Naylor and Sell (45))

The following theorem, definitions, and other ideas are needed from functional
and real analysis. See Royden (51) or Naylor and Sell (45) for more information and

proofs.




Theorem 2 (Compactness) Let (X.d) be a metric space. Then the following

statements are equivalent:

e (X,d) is compact
¢ (X.d) is sequentially compact

o (X,d) s complete and totally bounded

Definition 8 (Sequentially Compact) A metric space (X,d) is said to be se-

quentially compact if every sequence in (X,d) contains a convergent subsequence.

Definition 9 The space L\ 1 is an extension on the Lebesgue space, Ly, for functions

of both time and space where

Lyt {u: [jull,r < o0} (5.5)

lulhr = /0 ’ /_ ‘: lu(z, )| dz dt . (5.6)

Definition 10 T'Vr(u) is an eztension of the total variation function, TV (u), for
functions u of both time and space. It is defined as

TVr(u) = limsup-=- / / u(z + €,t) — u(z,t)| dz dt

=0

+ limsup - / / lu(z,t + €) — u(z,t)| dz dt .

¢—0

Definition 11 The notation, supp.(u), is used to identify the support of the function

u(z,t) with respect to the = variable.

With these theorems, definitions and the material in the Chapter II, a conver-
gence result (Theorem 3) is obtained. Consider the following domain where B, R,

and T are positive constants
= {u€ Li7:TVr(u) < B and supp,(u)C [-R,R]Vte [0,T]} .
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It can be shown that D is a compact set. Now for the convergence definition, theorem

and outline of the proof. These ideas are taken from LeVeque (32).

Definition 12 (Convergence) Let W be the set of all weak solutions to the con-
servation law and let dist(V, W), the distance from a function V to the set, be defined
as

dist(V,\W) = Jél‘vaV—le‘T.

Then by convergence we mean

dist(V, W) — 0 ask — 0.

LeVeque makes the following comment in regards to the convergence definition.
“There is no guarantee that ||V, — wjlir — 0 as k — 0 for any fixed weak so-
lution w(z,t). The computed V, might be close to one weak solution for one value
of « and close to a completely different weak solution for a slightly smaller value
of the time step x.” (32:159) He states further that “what the convergence tells us
is by taking a fine enough grid, we can be guaranteed of being arbitrarily close to
some weak solution.” (32:159) Under this definition, uniqueness can be a concern as

is addressed in the note after the proof of Theorem 3.

Theorem 3 (Convergence) IfV.(z,t) is a solution to (5.8), consistent with (5.1),
in conservation form, has a Lipshitz continuous numerical fluz, and is contained in

the domain D then V,(z,t) converges to a weak solution of (5.1).
(Reference LeVeque (32))

An outline of the convergence proof is as follows. Define W as the set of all
weak solutions to the conservation law. Assume V, does not converge to any w € W.

Then there is some € > 0 and some sequence of approximations {V,, V,,,...} such
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that x; — 0 as j — oo while
dist(V, ,W) = ig‘i:vHV,‘] —wlhr > € for all j . (5.7)

That is. let € be as chosen previous to equation (5.7). Then there exists 0 < k; such
that dist(Vi,, W) > €. Next choose 0 < k; < ky such that dist(Vi,, W) > €. Finally
choose 0 < k41 < k; such that dist(Vi,,,, W) > e. Therefore the distance of V, = Vi
from W is larger than ¢ for all I. Because V; € D, a compact metric space, by the
compactness theorem this sequence must have a convergent subsequence, { Vm }

converging to some function V' € D. Then, far enough out in the subsequence
Wi = Vihr < e for sufficiently large m . (5.8)

Further, by applying the Lax-Wendroff Theorem on this subsequence, the result that
V must be a weak solution of the conservation law is obtained, ie. V € W. But
each Vj,, is one of the Vi,’s. This implies for large enough m, dist(Vi,,W) > ¢
and dist(V;,,w) < e. This is a contradiction, so the original assumption that the
arbitrary sequence V, does not converge to a weak solution is false; and the proof is

complete.

Note: the above work only guarantees convergence to some weak solution,
not a unique weak solution. For uniqueness an additional requirement, such as
consistency with an entropy condition, must be imposed. See equations (2.17)-(2.18)

and surrounding material in the Chapter II regarding the entropy condition.

5.2 SPH Frtensions

The convergence ideas just discussed are now extended to SPH. This is done by

stating and proving three lemmas, derived from the Lax-Wendroff Theorem. Start
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with the kernel approximation form

—Rf(u) for u(z,t) € C.(2 x [0,T]) (5.9)
where Rf(u(z,t)) = /Q F(u(@ort)) W(z = 2,) dz, .

u

C. is the space of piecewise continuous functions and  is the spatial domain of u.
Since only one dimensional problems are considered here,  is simply an interval on

the real line.

Lemma 3 (Kernel Approximation) Letu,(z,t) be a solution of (5.9), consistent
with (5.1). Assume Ju(z,t) such that up(=,t) — u(z,t) as h — 0 in a bounded a.e.
sense. Then u(z,t) is a weak solution of (5.1)-(5.2).

Proof. Let ¢(z,t) € CH(R x R*) and ux(z,t) be a solution of (5.9). Multiply
equation (5.9) by #(z,t) and integrate over all time and space
00 foO 0
L @t guende
o0 poo o
— /0 /_ " 4(z,) /Q Fun(@0,8)) 5-W( = 20) da, dz dt . (5.10)

Since ¢ has compact support, there exist positive constants r and r such that

I
=

¢(z,1)
#(z,t) = 0 Vt € R when |z| > 1, (5.12)

V€ R whent>r (5.11)

ie. ¢ is only non-zero in the box {{—r, r] x [0, 7]}. Therefore in the integrals to follow,

the integrals are actually not taken over an infinite domain, but a finite domain.

First, consider the left hand side of equation (5.10). Change the order of
integration, integrate by parts, simplify using the compact support of ¢, and change

the order of integration back again. Changing the order of integration is justified
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considering the compact support of ¢ and the Fubini Theorem:

Am[Z o(z,1) I%u"(xt drdt = / / uh(x t)dtdz

= /oo{cﬁ(x t)un(z, t) - /oo —¢(x t)up(z,t) dt}dz
T t=0 o
= - [ #a0u@0d - [ [Tofet)uia.t)dida
= e 0u@0d — [ [ e tusetdsdr. (513

Second, consider the right hand side of equation (5.10). Change the order of
the inner integration, integrate by parts, simplify using the compact support of ¢,
and change the order of integration back again. Once again, changing the order of
integration is allowed based on note regarding the compact support of ¢ earlier and

the Fubini Theorem:

—/ / #(z,t) /f (un xo,t)) W(z — z,)dz, dz dt
= - /0 /ﬂ F(un(zort)) /_ : ¢(a:,t)—3%W(z—zo)dz dz, dt
- - /0°° /ﬂ f(uh(zo,t)){¢(:z:,t) Wz —z.)|

T=—=00

- /_ : -(%¢(z, W (z — z,) dz} dz, dt
- % [ fun(zat)) [ : be(z,t) W(z — ,) dz dz, dt
- /0 * /_ : és(z, 1) /n F(un(zo,t)) W(z — z,) dz, dzdt . (5.14)

Put the two sides of equation (5.10) back together (from equations (5.13) and
(5.14) ) to obtain

_./ é(z,0) up(z,0)dr = /()w[—:{¢,(x,t)uh(z,t)
+ ¢:(2,t) /ﬂ F(un(Eo, ) W(z - 2,) da:o} dzdt . (5.15)
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For the first term in equation (5.15) the following is developed. By the assumption
that u; converges in bounded a.e. sense, uj(z) < M(z) a.e. Then there exist
Lebesgue integrable functions ¢ = M|9@|, fo = dup, and f = ou. Further since ¢ is

continuous, fj converges to f a.e. Then apply the Lebesgue Dominated Convergence

Theorem (limp—o [ fo = [lima—o fn = [ f) to obtain

lim [—/_Z ¢(x,0)uh(z,0)d1‘] = —/_°° lim [((z,0) ua(z, 0))] dz

g o0 h—0

= —/-oo &(z,0)u(z,0)dz .

The second term in equation (5.15) is handled similarly

/Ow/_:@(x,t)uh(x,t)dxdt — [)w£:¢t(z,t)u(x,t)dxdt ash—0.

From consistency

/n Flun(@ont) W(z — zo)dz, = flun(z,t)) + hZex,

where e; = %Supgen |f”(€)|. If f is Lipshitz continuous, and since u, — u in a
bounded a.e. sense, then f(us) is bounded and f(us) — f(u) a.e. Then apply the

Lebesgue Dominated Convergence Theorem on the last term

lim /0°° /:: e(z, 1) /n Flun(20t) W(z — 2,) dz, dz dt

h—0
=  lim /o°° /_ ‘: (2, ) [f(un(z, 1)) + hPex] dz dt

h—0

= [T bule0) fula ) dat

Therefore, conclude from equation (5.15) that

/ooo /_‘Z [z, ) u(z, 1) + $o(2,2) f(u))dedt = - /_:¢(z,0)u(x,0)dx. (5.16)




Since equation (5.16) holds for any test function ¢, u is a weak solution of (5.1).
ad

The second extension of the Lax-Wendroff ideas to SPH addresses the particle

approximation form
@ = —S'f(u) where S’ f(u(z;,t ZAJ:] u(z;, )Wz, ~z,). (5.17)

Lemma 4 (Continuous Particle Approximation) Let u,ir,t) € C.(Q2x [0,T])
be piecewise continuous and a solution of (5.17), consistent with (5.1). Assume
J u(z,t) such thet ny(z,t) — u(z,t) as h — 0,Az — 0 in a bounded a.e. sense.

Then u(z,t) is a weak solution of (5.1)-(5.2).

Proof. Let ¢(z,t) € CH(R x R*) and ux(z,t) be a solution of (5.17). Multiply
equation (5.17) by ¢(z,t) and integrate over all time and space

/ / ——u;,(:t t) dz dt

* 9
_/0 /_m é(z,t zAx, (un(zjs1) 5-W(z = 2;) dzdt . (5.18)

=1

As in the proof of the previous lemma, take note of the compact support of ¢ and

will use equations (5.11) and (5.12) in this proof.

First, consider the left hand side of equation (5.18). Note this is exactly the
same as in the proof for the last lemma. Therefore, the same steps will be done and
not shown here. Namely, change the order of integration, integrate by parts, simplify

using the compact support of ¢, and change the order of integration back again

/ / u;,(x t)dz dt

= —/ #(z,0) up(z,0Vdz —/ / éi(z,t) up(z,t)dz dt . (5.19)
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Second, consider the right hand side of equation (5.18). Change the order of
the inner integration and summation, integrate by parts, simplify using the compact
support of ¢, and change the order back again. As in the previous proof, use equa-

tions (5.11) and (5.12) to justify changing the order of integration and summation:

oo o0 N
_/o /_oo ?(z.1) ;A%'f(w(wj,t))%w(:c—x,-)dxdt

oo N o P
- —/0 EAxif("h(xj’t))/_w B(z,t) 3 W (z = z;) de dt

- - > as, f(uh(zj,t)){¢(I»t)W(1"$j)

r=-00

_ /_Z a%m, £ W(z — :z:j)d:t} dt

o0 A’ o0
- /0 z_: Az; f(uh(:cj,t))/oo bo(z,t) W(z — ;) dz dt

= / / 2z, t) [Z Az; f(u,,(z,,t))W(z—z,)] dzdt . (5.20)

3=1

Put the two sides of equation (5.18) back together (from equations (5.19) and
(5.20) ) to obtain

—/ 8(z,0) us(z,0) d / ] {q&t(z 1) un(z,t) + dulzyt)

ZA:‘, un(z;,t)) W(z — x]-)] } drdt . (5.21)

As in the proof of the previous lemma, by the assumption that u;, — u in a bounded
a.e. sense, use the Lebesgue Dominated Convergence Theorem on the first and

second terms in equation (5.21) to obtain

—[7 4(z,0)u(z,0)dz

—00
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and

/ow /_: ¢e(z, t)u(z, t)dz dt

respectively as A — 0. From consistency

N
2 Az; f(un(zjt))W(z —z;) = ./9 f(un(zo,t))W(z —2,)dz, + hAze,

= f(un(z,t)) + h’ex + hAze,,

where e, = %SUPsen |f*(€)] and e, = =2 supgeq | [f(E)W(z — €)]'|. Since up — u
in a bounded a.e. sense and f is Lipshitz continuous, as in the proof of the last

lemma as A — 0 and Az — 0 the last term becomes

1=1

o0 00 N
lim  limaz—o /0 /_ _bela,t) [Z Az; f(un(z;,t) W(z — z;)| dz dt

= lim lim /0°° [ " ba(z, O[f(un(2,1) + Kl e + hAze,] dodt

h—0 Az—0

- /0°° /_Z be(z,8) f(u(z, b)) dz dt .

Therefore conclude from equation (5.21) that

/ooo /: [$e(z, t) u(z,t) + d=(z,t) f(u)]dzdt = — [:¢(z,0)u(z,0)dz. (5.22)

Since equation (5.22) holds for any test function ¢, u is a weak solution of (5.1).
O
The third extension of the Lax-Wendroff ideas to SPH also addresses the par-

ticle approximation form (5.17). However, at this time instead of assuming that

ux(z,t) is continuous (piecewise), assume it is only grid function in x.

Definition 13 (Grid Function) ux(z,t) is a grid function in z if it is a piecewise
constant function defined at the grid points and constant in a region around each

grid point.
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Sometimes a grid function is defined as a linear interpolation between the grid points
instead of simply constant. In that case, the previous lemma would apply. However,

the piecewise constant notion of a grid function is maintained here.

Lemma 5 (Discrete Particle Approximation) Let ui(z,t), a grid function in
z, be a solution of (5.17), consistent with (5.1). Assume Ju(z,t) such that up(z,t) —
u(z,t) as h — 0,Ar — 0 in a bounded a.e. sense, using the L, norm given in
equation (5.6) (ie. [T [ |un(z,t) — u(z,t)|dzdt — 0). Then u(z,t) is a weak
solution of (5.1)-(5.2).

Proof. Let ¢(z,t) € CHR x R*) and up(z;,t) be a solution of (5.17). Multiply

equation (5.17) by Az; ¢(z;,t), sum over all space, and integrate over time:

/0 Z Az ¢(z;,t) %uh(x,, = —/ Z Az; ¢(z;,t)

t=—o00 1=-00

X ZA:, un(z;,t))W'(z; — z;) dt . (5.23)

As with the last two lemmas, use the compact support of ¢ and the relationships

shown in equations (5.11) and (5.12) in this proof to to deal with only finite domains.

First, consider the left hand side of equation (5.23). Change the order of
integration and summation, integrate by parts, simplify using the compact support
of ¢, and change the order back again. As in the previous two proofs, use equations

(5.11) and (5.12) to justify changing the order of integration:

/ Z Az; ¢(zi,t) —up(z;, t)dt = f: A:c;/o é(zi, t) auh(z,, t)dt

1I=—00 1=—00

o} . - a
B i:;wA-’Ei{ﬂx.-,t)uh(x‘,t)t=0 - /0 §¢(zi,t)uh(z;,t)dt}
= - L A0 un0) - Z Aai [ gz t)un(ai, t) dt
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) 00 00
= = % Azi¢(z,0)un(z:,0) — / S Az di(zi t)un(za, t)dt . (5.24)
t=-00 0 ="
A process known as summation-by-parts is needed in the next step. It is the
discrete analogue to integration-by-parts. Since it is not widely used, a demonstra-

tion how it works in provided. For sequences {a;} and {b;} and positive constant

R R R R+1 R-1
Yo ailbiyi—bic1) = Y abipr — Y aibioy = Y ainbi— ). ainb
i=—R i=-R =~R 1i=—R+1 iz=—R-1
R
= = Y (aGiy1 — ain1)b;
i=—R

+ apbr41 — @_p-1b-p — a_pb_p-1 + ar41br .

Now, consider the right hand side of equation (5.23). Change the order of the
inner summation, use the definition of the derivative, sum by parts, simplify using
the compact support of ¢, and change the order back again. As before, use equations
(5.11) and (5.12) to justify changing the order of summation. Also note: assume that
Az; = (Aziyy — Azi_1)/2 (see equation (3.17) for consistency). This is used before
and after the summation-by-parts to allow that process to work as demonstrated

above:

w 2 N
- /0 Y Bz Hant) Y Az flun(@; )W (@i - z;) dt

1=—00

o0 N o0
~ Jo EA‘”J' f(un(z;»t)) [ Y Az g(xi, )W (zi — :c,-)} dt

[s <] N it
= — /0 Z:Azj f(uh(x,-,t)){ _‘2 Az; §(z;,t)
< [W(zi+1 —z;) = W(ziz1 — ;) + O(Ax2)} } dt
Tip1 — Ti—1
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=00 Tit1 — Li-1

o N _ |
[) ZAxJ Up ‘rja { Z A [ zl‘i‘l,t) ¢.(It—lst)
J=1

+ O(Aﬁ)] W(z; - z;)} dt
- / Z A [ 17,+1,t) - ¢(xi—lat) + O(Al’z)]

Tigyl — Ti-1

=—=00

X l:z Al‘j f(uh(x,-,t))W(J:i - :BJ)] dt . (525)

Put the two sides of equation (5.23) back together (from equations (5.24) and
(5.25) ) to obtain

— f: Az; ¢(zi,0) up(z;,0) = / Z A:z:.{ de(i, t) up(zi, t) (5.26)
+ ¢($i+l,t) - ¢($i—1,t) + O(A:c ZAzJ u x” )) W(I,‘ _ zj):l } dt .
Ti+1 — Ti-y j=1

Note by definition of the Riemann integral that the sums in the first two terms in
equation (5.26) can be replaced by integrals as Az — 0. Also as in the proof of the
previous two lemmas, by the assumption that u; — u in a bounded a.e. sense, the

first and second terms in equation (5.26) become respectively

lim lim [ 3 A:c,-¢(z,-,0)u;,(z,-,0)] = lim [- /°°w¢(z,0)uh(z,0)dz]

h—0 Az—0 . h—0
i=—00

= —/oo &(z,0) u(z,0)dz

and
tim fim [ Avgantiuiandt = Jim [7 [7 sz, t)una,t) de d

{=—~00

= /o°°/_:¢,(z,t)u(z,t)dzdt.
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From the definition of the derivative

¢(Il'+ls t) - ¢(zi—lv t)

Tipl — Ti-1

= ¢.(z,t) + O(Az?),

and from the Consistency Chapter (III)

N
Y Az; fun(z;pt)) W(z —z;) = /Qf(uh(xo,t))W(.’c—zo)dzo + hAze,

=1

= f(un(z,t)) + h%’ex + hAze,,

where ex = & supgeq | f"(€)] and e, = 52 supeeq | [ f(E)W(z — €)}' | So the third

term in equation (5.26) becomes

Lw i Az, [¢($i+l, t) — ¢(xi—l’t) + O(A$2)]

i=—00 Ti41 — Ti-1

N
X [E Az; f(un(z;,t)) W(z.-—x,-)] dt

j=1

- /0°° fj Azido(zi,t) fun(zi,t)) dt

t=-00

75 Ani[u(at) O(haa, k) + flur(z, 1) O(ATY)] de .

f=—o00

Ther -btain
Ar—0 .
t==-=00

- { [0 3 Ariduleat) funlat)

1=—00

+ /0°° 3 Az, [#=(2:,)O(hAz, h?) + f(un(z:,1)) O(Az?)] dt}

= /0°° /_:¢,(z,t) F(un(z, b)) dz dt + ]0°° /_Zq&,(z,t)O(h’)dxdt.
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Then using uy, — u in a bounded a.e. sense and f is Lipshitz continuous, this last

term becomes

m[/ow/:_m bu(z.t) Flun(z,t))dodt + /()w[:w¢x(z,a)0(h2)dxdt]
- /0°° /:_oo é2(z.t) f(u(z, 1)) dz dt .

Therefore conclude from equation (5.26) as h — 0,Az — 0

/0°° /_O:o [be(z,t) u(z, t) + ¢(z,t) f(u)ldzdt = —/0:0 #(z,0)u(z,0)dz . (5.27)

Since equation (5.27) holds for any test function ¢, u is a weak solution of (5.1).

O

5.3 Summary

The proof of the convergence theorem (Theorem 3) given earlier in this chap-
ter from LeVeque relied on set theory and the Lax-Wendroff theorem and not the
numerical technique (other than consistency). Hence, the convergence theorem is
applicable to SPH as long as a suitable replacement for the Lax-Wendroff theorem is
available, since it relies on the specific method (finite differences). The three lemmas
that were stated and proved in the last section are such replacements in SPH for the
Lax-Wendroff theorem. Therefore under the assumptions of the convergence theo-
rem and the applicable lemma, SPH will converge to a weak solution of the general

conservation equation.
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VI. KERNELS

In this chapter the key element of the SPH method, the kernel function, is
discussed. The kernel plays major roles in consistency (the kernel approximation)
and stability (the PW" instability and several stabilizing techniques). Hence, it
is key to the convergence as well based on the previous chapter. In addition to
these more mathematical properties, the kernel affects accuracy; a primary concern
of all those using SPH. Although the method is O(h%,AAz), when h, or Az are
not very small the coefficients of these error terms can become quite important.
Those coefficients are controlled by the function being approximated and the kernel.
Since the function is, to some extent, a uncontrollable factor and the kernel is easily

changed, the kernel becomes a primary factor in accuracy.

The material covered in this chapter involves two areas. First, is the propérties
of the kernel, which include discussions on the kernel requirement, higher order ker-
nels, and the smoothing length. Second, is a comparison of several kernels. It is this
second area that the major contributions are found. This includes the development
of measures of merit for kernels and both qualitative and quantitative comparisons
of kernels. The results lend insight into the kernel under given assumptions while the
measures of merit are general enough so that they can be used under m. y different

assumptions.

6.1 Kernel Properties

In this section some of the basic properties are discussed. These include a list of
requirements for a function to be considered an SPH kernel, making kernels higher
order, and the smoothing length. Much of this work takes the form of literature

review mixed with filling in the details that are lacking.
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6.1.1 Kernel Requirements. = Many di'erent kernels have been used in SPH
as shown in various journal articles. To some extent it should not matter which
kernel is used. However, Monaghan'’s first golden rule of SPH is “if you want to find
a physical interpretation of an SPH equation it is always best to assume the kernel
is a Gaussian.” (44:545) Throughout this dissertation various rules and requirements

are applied to the kernel. These are summarized below

o The kernel should be normalized: [; W(u)du =1

e The kernel should be even (symmetric). This is required to obtain a second

order method.

o The kernel should have compact support. In general the support is defined in
terms of h and k. h is a measure of the width of the kernel and provides a
standard distance and unit to use. It may be changed from particle to particle.
k is a constant for each kernel that determines the spread of a particular kernel

in terms of h. So, define W(u, k) = 0 for |u| > kh.

e The kernel should be sufficiently smooth. For the function approximation it
needs to be continuous. For the derivative approximation it also needs to
be continuous, but better results will be obtained if it has a continuous first
derivative. For linear stability analysis it is necessary to have one order of

smoothness higher than listed here.

o The kernel should be of the form W(z, k) = 3K (1?) where d is the dimension
(1,2, or 3). Although there does not appear to be a pressing need for this form,
it simplifies the choice of kernels and allows the application of distribution
theory. Note: the normalization constant is sometimes pulled outside of K{(u)
so that only the coefficients of K change from one dimension to another. To

accommodate this, the notation K(u) = ¢, K (u) is used here.

e The kernel should be positive. This is only required if the kernel is being treated
as from a Delta Family in distribution theory (see Stakgold (58)). However,
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it is also desirable in many cases, especially when performing the function

approximation to ensure non-physical results do not occur.

Any function that meets the rules above can be used as an SPH kernel. Note:
later in this chapter the requirement that K’(0) = 0 is employed. Although not

required it appears that this is a good choice for accuracy concerns.

6.1.2 Higher Order Kernels. For the most part, SPH is considered an
O(h?) method. However, it is possible to obtain higher order estimates, just as in
finite differences. First, the kernel approximation can be made of order O(4*) by

requiring equation (6.1) to hold:
/n wWW(u,h)du = 0. (6.1)

When errors were discussed in Chapter III earlier, the terms involving u and u®
vanished when W was even. So when equation (6.1) holds, the lowest order term has
a u* factor, which makes the method O(k*). The trouble is, this makes only the kernel
approximation more accurate, not the particle approximation to it. The particle
approximation is not effected by changing W, only by increasing the number of
particles. The number of particles and corresponding A must be such that the particle

approximation is also of higher order or else changing the kernel gains nothing.

Another possible problem is that fourth order keruels must be negative for
part of the region over which they are defined in order for equation (6.1) to hold.
This can cause density to become negative for some particles (if using density-by-
summation form), violating the last rule in the previous subsection. Although these
local problems seem significant, the published literature to date implies they do not

cause any global problems.

Monaghan (38) gives a procedure for making kernels higher order from their

lower order forms (at least for three dimensional kernels). Two of the more popular
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examples are the Super-Gaussian and Enhanced W, B Spline (both bell shaped).
Since the work in this chapter mostly concentrates on one dimensional kernels, those
forms of the higher order kernels are listed in Table 6.1. Note: K(u) = ¢,K(u) and
W(z, h) = :K(%).

| Name | K(u) I k| 1-Dec, —I
Super-Gaussian (3 —u?)e ™ 3 =7
. 17 — Bu? 4 Bjy)3 if0<|ul<L1 1
Enhanced B-Splines { L - lu‘)2(49 A7) i 1< u <2 2 18
Super-Gaussian 2 (1.49624 — u?)e~* 3 | 0.566214

Table 6.1 One-Dimensional Higher Order kernels

For the Super-Gaussian some of the values are not correct. To six digits, the
2 should be approximately 1.49624 and c, should be approximately 0.566214 (the
actual values involve the error function). However, it is common in SPH to develop
the Gaussian on (—o00,00), but then use it on only (—3k,3k). Although for many
problems, the results using the two versions are virtually identical, it is probably
best to be consistent in how a kernel is developed and used, especially for the higher

order kernels.

6.1.3 Smoothing Length. The smoothing length h is very important in
SPH for efficiency, accuracy, and physical processes. The efficiency is obtained when
summing over the neighbors for a particular particle, since only neighbor particles
within a distance of xh need be included. A smaller A means the sum is over a smaller
number of particles. The accuracy comes from having a sufficient number of particles
in the xh range. Also, from earlier, it was stated that the kernel approximation was
O(h?). The physical process comes from h controlling the range over which the forces

are felt.

The smoothing length has varied quite a bit through the literature. The basic
form is for & to be selected at the beginning of the problem and to remain constant

thereafter. This fits in well with the Eulerian picture of a fixed mesh. Unfortunately
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this is not always as accurate as desired. So two forms of a varying h are discussed.
First. h can vary for each time step. This is similar to the basic form and does not
require much modification. The second is to allow h to vary for each particle. This is
a large departure from the basic form and is discussed later. In general, the analysis
performed in this dissertation uses the most basic form of the smoothing length. The

remainder of this information is for completeness.

The primary question is how to select the value for h, whether once initially
or for each time step. If k is too small (with respect to a given particle spacing),
large fluctuations could occur because of not smoothing enough and the algorithm
could just be modeling particle motion instead of fluid flow. If A is too large, details
are smoothed out loosing accuracy. If & is to remain fixed, a simple rule of h x w7z
is purported to work well in the literature. Also note the relationship in (6.2) holds
fairly well, as the errors from the kernel approximation and particle approximation
are roughly balanced:

O(e, h M;) =~ O(ex h?). (6.2)

However, if A is to vary in time, Gingold and Monaghan (13) suggested using an
average density and later Monaghan (38) recommended using an average number

density. The latter is shown in equations (6.3) and (6.4):

1
where
1 &S opj
N E m;

These formula allow A to decrease when 7 (or p) increases and vice versa keeping
the resolution roughly constant throughout the calculation. It should be noted that
= should be approximately equal to the average particle spacing in one dimension.
Otherwise the particle approximation is of a disproportionate order to that of the

kernel approximation. Note: these relationships (6.2, 6.3) are purported to work
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well in three dimensions and fairly well in two dimensions, but not very well in one

dimension.

In some problems, having h constant for all particles does not provide the
accuracy and resolution required. In areas where particles are highly concentrated,
h may be too large, while in other areas it may be too small. So several authors have
proposed methods to allow h to vary for each particle, giving h; for particle :. There
are three main concerns with using this scheme: how to choose h;, how to maintain

conservation, and how to account properly for A; in the derivation of the equations.

To choose h; at each step, Evrard (10) suggested h; should scale with local
interparticle separation. This leads to the most common method of calculating h;

as shown in equation (6.5):

Dh,‘ h.‘ Dp,'
Dt (,TJ) Dt (6:5)

where d is a constant usually taken to be the number of dimensions. The derivation
for this equation was not given by Evrard, so it is done here. First, the desired
relationship is

- ., (6.6)

where c is a constant. In one-dimension, Ar ~ . But that does not hold in higher
dimensions. Assume  is a square about a particle in two dimensions or a cube
in three dimensions, then let Az be the diagonal of that region. Note: it is also
possible to assume = is a circle (or sphere) with Az as the diameter and obtain the

same form (6.5). In fact, many other choices are possible as long as they lead to

Az = ¢4\ (m/p) for dimension d (1,2,0or 3) and constant c;.

Side of Square = s = VArea = \/7'1_-
p
Azr = \/55 = \/5\/—7—:——
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Side of Cube = s = VVolume = 3_’;1

Ar =~ V3s = \/5\3/%

This leads to Az = \/c_i(-""i)ﬁ, for d = 1,2,0r 3 or more generally Az = ch(%)ﬁ.

Putting this together with equation (6.6) yields

ch = Az
Dh D) DY e fmL D
Dt Dt Dt d\| p »p Dt
Az Dp ch Dp
= T odDt T T pdDt
L Dbh _(L)&
Dt pd) Dt ’

This equation for h seems to make sense in expanding and contracting gas clouds.
However, for problems with material strength it may not be sufficient since fracture
and fragmentation are not being properly represented. Also, although this differen-
tial equation for A works well overall, for some particles, the 9,‘—’ ratio may still be
too large. However, by selecting a constant M, the maximum value allowed for the

ratio, then

Az Vvd [m d
= _h—(—p-) < M (6.7)
v (m\?
= h > Mo (-;) . (6.8)

In an algorithm, to calculate h use the maximum of k calculated by equations (6.5)

an« (6.8).

The most common means of maintaining conservation involve replacing k in
the standard SPH formulas developed so far with some form of a symmetric combi-

nation of h;’s. For example a simple arithmetic mean seems to work quite well (ie.
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W (u. ﬁ—;—hl) ). Another method is to replace the entire kernel function with some
sort of symmetric combination of two kernel functions (ie. [W(u, h,)+W(u, h;)}/2 ).

Both methods seem to work well. with neither having a distinct advantage.

The last item is a little more complex. When replacing h with h;, it must be
considered when the gradient or any other derivative of the kernel is taken. By the
chain rule an extra term that resembles %inh; is obtained. One thought is that
h; does not vary too much from particle to particle and, therefore, the gradient of h
1s quite small. At least smaller than the error in the particle method itself. This is
probably a reasonable assumption, and is the one most often used. However, 1t does

raise the question (as yet unanswered) what if this term in not negligible?

6.2 Kernel Comparisons

As stated earlier in the chapter, to some extent it should not matter what kernel
is used. That is true, especially in the limit as A and Az become small. But when
they are not small, as is common in practice, the choice of kernel can drastically
change the results. Hence, an analysis to determine what are better kernels and
poorer kernels is performed in this section. Although it is done in several stages
there are three primary parts to this work. First, measures of merit are developed
for kernels under smooth and non-data circumstances. These can be used as given
or easily modified to analyze kernels under other assumptions. Second, using the
basic equation behind the measure of merit, 18 kernels are analyzed qualitatively.
Third, using the measure of merit the 18 kernels are analyzed quantitatively. The
overall results are that bell shaped kernels are better to use than either concave up

(hyperbolic shaped) or concave down (parabolic shaped).

To start this analysis, consider the eighteen kernels shown in Table 6.2. Plots
of these kernels and their derivatives are found in Figures C.1 - C.10 in Appendix C.
They are all even, positive, and of the form W(z,h) = 1 K(%) = %?f((%), where ¢,

is the normalization constant. So the functions K and K are the same except that
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K is normalized, and K is not. Note: K is shown in Table 6.2. They are also all
defined to be zero outside of xh. In the table, the Type column is either: B - Bell
Shaped, P - Parabolic Shaped (concave down), or H - Hyperbolic Shaped (concave
up). The parabolic shaped kernels are so named because they resemble a downward
opening parabola (# 11 actually is a parabola). Similarly, the hyperbolic shaped
kernels are so named because they resemble the negative exponential function which
is a hyperbolic function (# 4 actually is a hyperbolic function). Also in the table,

¢, i1s the normalization constant for one dimension (1-D).

ﬂ # ’ Name ﬁype I K(u) | nl 1-D ¢, J}

1 | Gaussian B |e¥ 3 71;
— 342131, o< <

2 | W, B-Spline B { ;(2 iulur)_a“M ;(1) < }zl p ; 2 2
3 | Cosine B |(1- “;—2)(1 + cos(%t)) 2 E‘:‘%
4 | Exponential H [elvl—¢® 9 { 0.500618
5 | Kk —2 Exponential | H [ e #%l4l _¢-9 2 | 2.250555
6 |1/X,2 H |75+ 2 | 7.337061
7 11/X,4 H | fg+52 2 | 30.163694
8 |1/X,10 H | o+ 2 | 283.125508
9 | -X* H | Z(Ju]-2)* 2 0.375
10{ —zr—e7" P [2—|ul—e M 42 2| 0.355617
11 [4-X? P J4—u® 2| 0.09375
1218-Xx3 P 18—JuP 2] 0.041667
13 | kK — 2 Gaussian B e 2% _ g9 2 | 0.846657
14 | L Gaussian B [(2-|up)e™ 2| 0.392674
15 | Q Gaussian B [(1-%)e ™ 2| 0.643998
16 | T Gaussian B |e* —¢ 2| 0.591401
17 | Quartic-1 B | (2+3u|)(2 - |u])® 2 | 0.0390625
18 | Quartic-2 B |16 —8Jul® + 3u* 2| 0.0260417

Table 6.2 One Dimensional Kernels Analyzed

6.2.1 Accuracy From Consistency Analysis.  The first thought is to consider

the bound from the consistency analysis in Chapter III. From equation (3.4), for a
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sufficiently smooth function, f(z). and for a kernel defined as above, the bound on

the kernel approximation in one dimension is

‘ max (£(€)1/2 [ wK(u)du. (6.9)
| 0
In comparing different kernels, the function f is a constant, so just use the integral.
For any given function, a lower value from the integral should indicate a better kernel
approximation. It would be desirable .ed that the final SPH approxima-
tion is also better for lower values of the integral. Unfortunately, this is not always

true. The values for the integral for the 18 kernels are found in Table 6.3.

| # | Name | Type | Jo u*K(u)du ||
1 | Gaussian B | 0.24989
2 | W4 B-Splines B |0.16667
3 | Cosine B [0.206123
4 | Exponential H |0.979983
5 | Kk —2 Exponential | H | 0.0483464
6 |1/X,2 H |0.165735
7 11/XA4 H |0.179783
8 |1/X,10 H |0.190883
9 | -X? H 0.2
10| —z—e€7* P [0.372537
11]4-X? P |04
12]8-X° P 0.44444
13 | k -- 2 Gaussian B {0.110833
14 | L Gaussian B | 0.153629
15 | Q Gaussian B | 0.181942
16 | T Gaussian B |0.221115
17 | Quartic-1 B |0.190476
18 | Quartic-2 B |0.31746

Table 6.3 Kernel Integral Analysis

The data is this table indicates that the concave up (H) and bell shaped (B) kernels
are, for the most part, the better ones and the concave down (P) are poorer. However,

there are several exceptions. Based on work done later in this chapter, this holds
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only very broadly. The reason this indicator does not work as well as desired is
because it is evaluating only part of the SPH process, the kernel approximation. It
says nothing about the particle approximation. It is also a measure of the central
peakiness of the kernel. That is, the the smaller the value, the larger the peak is
at 0. If the error from the particle approximation is quite small, then this indicator
would appear more correct. In other words, as % — 0, the integral results would
determine the better kernels to use. But for more sparsely spaced particles, which
occurs in practice, a smaller value of the integral could quite easily indicate that not

enough smoothing is being done because the kernel is too peaked. So at best, the

integral results are only one overall indicator of the goodness of a kernel.

6.2.2 Uniform Space, Smooth Data Analysis. In this section, functions
that are fairly smooth (ie. no shocks present) are considered and the particles are
required to be uniformly spaced. Also the analysis is performed in one dimension
only. The result is an equation that will form the foundation of the measure of merit.

Start by defining the following

2

N
f; Z Az; f; Wi'j
Jj=1

T; = a+1i1Az; Ar;, = Az

T, = ¢, —z; = e+idr—a—jAz = (1—j)Az

, 1 T 1 .., /(,. .Azr 1,
Wi, = pK'(‘;f) = oK ((z—])T) = Kj.

Consider particle: € (1, N) such that z, —r; > xh and zy —z; > xh. Then examine
functions that are constant, linear, and quadratic under the assumptions here to find

a basic relationship.
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(1) Assume f is constant. f = ¢ = f' = 0. Since K is symmetric (even),

then K’ is odd. This then yields

h

N » cAz X /.. . Ar cAzr
0~ Nan W, = L ((z—J) ) = K0, (610)

=1 i=
Therefore, K’'(0) must equal zero to model the derivative of a constant function

exactly (under the above assumptions on K).

(2) Assume f is linear. f =cx+d = f' = c. Also assume that K'(0) is

zero, so that a constant function is exact and ¥)v; K/; = 0 . This then yields

j=1
| c ~ iv:Ax,-fijj = %f:(czﬁ'd)K'((i—j)%i)

i=1 i=1

_ chA:: Jé s KL+ d}ﬁx ZJ: K.,
- EhATx T; f: K:J. (subtract 0)
ot
i=1 =1
— 1~ -2 g; ! (9’2—‘"’)2 K (z%) . (6.11)

It is fairly easy to see that no function satisfies equation (6.11) for all values of §%.

(3) Assume f is quadratic. f =cz?+dz+e = f' =2cr+d. Also assume
that K'(0) is zero again. This then yields

N
2cz;+d = Y Azj(cz?+dz;+e) W)

=1
cAz X , dAz X , eAr X,
=1 =1 1=1
cAz , & cAr X _ daz X,
—hz—x?ZlK:J + 72;(21:, xj)K:j - —h-z—.’r,'z;Kij (add 0)
= = =
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Az N

Azr N
h_z 21‘,.1:1 K' —-dh—zz:.r.‘jl\’:j
1=1 =1

= Z uK'

cAa:

2z? Z I\' (subtract 0)

= —(2cz; +d) }:(z, z;) K;

Azx

~ e R,

This then shows that the same equation for linear functions works for quadratic
functions. However, this relationship does not seem to keep working for even higher

order polynomials.

Therefore, a kernel must be selected that that won’t satisfy equation (6.11) for
some values of A’ By choosing a partlcular , it i1s possible to find which kernels
satisfy the equation. This is very useful in selecting the initial particle separation
for a given kernel, but does nothing towards indicating what happens when particles
move. For unless the volume is held constant during a calculation, even the total
average 5% changes from time step to time step. But consider an interval of values
over which A’ varies. This is not exactly the same as in an actual calculation, but
should be close enough to determine what is a good kernel. Now consider three tests

based on this notion.

6.2.3 Test 1: Plots of Results.  The first test is simply a plot from which
qualitative results may be obtained. For each kernel, plot —2¥i2; I(%})’K ‘( éhﬁ)
and 1 for (4%) € [0.1,2.0]. These plots may be found in Appendix C (Figures C.11 -
C.28). From these plots three observations may be made. First, an overall opinion as
to which kernels are better than others. Second, a list of approximate values where
each kernel gives exact results. These are good initial separation values and can be
found precisely using a program such as Mathematica or MathCAD. Third, a better

understanding as to what happens when the particle separation becomes too large.
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For almost every kernel, the results start becoming quite poor when Az = h. Of
course, for most of the kernels, the results are completely wrong when the separation
approaches xh since nothing is being averaged there. In Chapter IV, it was noted that
there were problems in tension. Tension, of course, tends to force particles apart. So
the tension instability is worsened by the fact that the SPH approximation becomes
very poor when particles are too sparsely spaced. This result points out that the
instability and inaccuracy are intermixed so that it may be difficult to determine

which is the root of a particular problem.

6.2.4 Test 2: Error Norms.  Although the results of Test 1 provide good
qualitative results, it is desirable to obtain quantitative results as well. To do this,
perform relative error norms based on equation (6.11). In this subsection both
and [, relative error norms are calculated for 100 values of (%) € [0.2,1.2]. The

formulas for these are shown in equations (6.12) and (6.13):

1
h = (ma)

I, = (130)2[ 221(02+m) K'(l(02+m))—1r. (6.13)

-221 (02+m) (1(02+100))—1‘ (6.12)

- norms could also be calculated, but were not since they can be easily inferred
from the previous plots. The nterval [0.2,1.2] can be argued as being too arbitrary.
However, it was chosen as follows: all of the kernels are very accurate for values
small enough, but seldom does one have the luxury (or computer time) to compute
with that many particles. Also, all of the kernels perform poorly when the values
become too large, and that might improperly skew the results. So a reasonable range
was set. Further, the range was centered on 0.7 (a popular value) and was chosen
large enough to apply to fixed h problems. Az/h is more likely to vary over a wider
range in a calculation using fixed h than one using variable A. If for a particular

problem more information is available on the ranges or Az, h, or the ratio of the
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two other more appropriate intervals could be used. Other information can come

from the physical process being modeled. The results for the eighteen kernels may

be found in Table 6.4.

L # | Name | Type | & | |
1 | Gaussian B | 0.00279564 | 0.00621344
2 | W4 B-Splines B |0.0128797 | 0.0201059
3 | Cosine B | 0.0284004 | 0.0451499
4 | Exponential H {0.0463731 | 0.0565237
5 | k—2 Exponential | H [ 0.512015 0.569665
6 |1/X,2 H |0.12708 0.156575
7T 11/X4 H |0.103547 0.130743
8 |1/X,10 H ]0.0893328 | 0.115851
9 | -X* H | 0.0802408 | 0.107258
10| —z—-e€* P 10.24071 0.293757
1114-X2 P 0.291355 0.356247
1218-X° P 0.383839 0.471477
13 | kK — 2 Gaussian B 0.0901453 | 0.16566
14 | L Gaussian B 0.0604716 | 0.0843238
15 | Q Gaussian B |0.0119989 | 0.0192021
16 | T Gaussian B ]0.0320381 | 0.0405489
17 | Quartic-1 B | 0.0196585 | 0.0305967
18 | Quartic-2 B | 0.0887839 | 0.125373

Table 6.4 Relative Error Norms for Kernel Test 2

A few general conclusions can be drawn from the data in Table 6.4. First, the Gaus-
sian is the best of these kernels. However, like the Exponential it has a support (k)
larger than the others; which implies it uses more particles to obtain the average.
Therefore, it should be expected to have somewhat better results. Note: the wider
support will cost more in computation time since it requires a sum over more parti-
cles. So this is an accuracy versus efficiency concern. Second, the top six kernels are
all bell shaped (B), the next eight are either bell (B) or hyperbolic (H) shaped, and
the last four are parabolic (P) or hyperbolic (H). This clearly shows that bell shaped
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kernels should be the kernels of choice; however, the kernel must still be picked with

due care.

6.2.5 Test 3: Test Functions. Although the results of Test 1 and Test 2
have theoretical basis, they only show a kernel’s worth for polynomial functions up
to quadratic. Therefore, three test functions are used to demonstrate if the previous

results still hold for higher order functions and validate Test 2 as a measure of merit:

e Third Order Polynomial
¢ Sine Function
e Linear Step Function.

Plots of these three functions and their corresponding derivatives are shown in
Figure 6.1.

[y and [; relative error norms are calculated for a given é,f”— as follows: if f is the

function to be evaluated and S is the SPH approximation to f’

W () = == 'fiﬁj}),(x'f'(zi)|

) -

where N = (T4 — o)/ Az and z; = 7, + iAz. The values for z, and Zmq. for eacﬂ
function can be taken from Figure 6.1 as the left and right most points plotted. Note:
in order to avoid edge problems, extra particles are used at the ends to calculate S(z;)
when z; is close to £, or Zmaz. To obtain a single number for each kernel, 100 values
of 2Z are used to calculate an average (absolute or square) of the /; and /; errors
descrlbed above. The ranges chosen are. h € [0.1,0.2] and Az € [0.02,0.24] implying
8z €10.2,1.2]. The formulas for these are

100 1

<h> = 3 (i)

n=0

L (0.2 + m)‘
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f(x) Cubic f(x) Piecewise Linear
2 ——————————
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f(x) Sine Derivative of Piecewise Linear
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1 0.2
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-1 -0.2
-2
-0.4
-3 S—
Figure 6.1 Test 3: Test Functions
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<h> = \ijo (1—(1)—1) [ (o.2+1—3—6)]2.

n=0

The results are found in Tables C.5 and C.6 in Appendix C. In addition to the tables,
part of the results may be seen in the bar charts shown in Figures 6.2 and 6.3. In
these figures, the line with small boxes is the predicted goodness from Test 2 and the
bars are for the function results from Test 3. Only the smooth functions are shown
on these figures (Sine and Polynomial) since the properties are quite different for the

non-smooth results.

Smooth Data, 11 Norm

06 — @ sive Fnc | T a6
W N poin fnc

a5

g
Test 2 Results

Test 3 Results
(=]

o
X

ot 4

1 2 3 4 5 6 7 8 9 10 n 12 13 14 15 16 17 18
Kemels

Figure 6.2 Bar Chart for Test 3, {;, Smooth Data

Some general conclusions can be drawn from these figures for smooth data. First, |
the Test 2 results (norms given in Table 6.4) very closely match the norms from the
test functions. This implies that the error norm from Test 2 is a good measure of

merit of a kernel (at least globally) for smooth data. Second, since the data matches
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Figure 6.3 Bar Chart for Test3, /5, Smooth Data

Test 2 so well, the same conclusion can be made that bell shaped kernels are better.
Third, although the Gaussian (kernel # 1) is the best in Test 2 and the polynomial
test function, it is fifth best for the sine function. It still performs quite well, but
since it costs more in computer time to use it with only mixed results, the other bell

shaped kernels are more highly recommended for smooth data.

6.2.6 Higher Order Kernel Comparisons. Up until now, this section has
evaluated and compared only standard second order SPH kernels. However, in sub-
section 6.1.2 it was noted that higher order kernels were also possible (in that sub-
section they were fourth order). Since the analysis in this section does not rely on
the order of the kernel, comparisons between the different order kernels is easily

accomplished. This will be done using the fourth order kernels listed in Table 6.1.

6-19




First, the integral test from subsection 6.2.1 will result in 0, since that is the
definition of being higher order. This implies. when compared with the results in
Table 6.3, the higher order kernels should perform better. However, as previously
noted, the integral test is only valid when Az/h is sufficiently small. Note: the
Super-Gaussian actually has a value of about 0.0018799 when integrated over the

proper domain; see the note in section 6.1.2 for more information regarding this.

Second, the plots corresponding to Test 1 are found in Appendix C (Figures
C.31 - C.33). From these, it appears that the Super-Gaussian (either form) performs
quite well while the Enhanced B-Spline is only fair. For all three, the results sig-
nificantly decrease (even more than standard kernels) when Az/h becomes greater

than 1.

Third, the Test 2 results, corresponding to the norms described in subsection

6.2.4, are given in Table 6.5. As compared with standard kernels found in Table 6.4,

[ Name | Type | &k [ 4 Bl
Super-Gaussian B | 0.0191325 | 0.0429511
Enhanced B-Spline | B | 0.0882854 | 0.129977

Super-Gaussian 2 B ]0.0191335 | 0.0431463

Table 6.5 Rel Error Norms for Higher Order Kernel Test 2

these results are initially somewhat surprising. The Super-Gaussian would be fourth
best (3rd for /; and 5th for {;). The Enhanced B-Spline would be placed in with
the poorer bell shapes and better hyperbolic shapes. Although these results do not
make these overly bad kernels to use, they do not have any advantages over more
standard, lower order kernels. There are two reasons for this. First, since only the
kernel approximation is made better by a higher order kernel, the number of particles
must be significantly increased before the errors in the particle approximation are

of the same order as the kernel approximation (Az must approach h%). Second, the
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higher order kernels have more elaborate shapes than standard kernels. But unless

enough particles are used to take advantage of that shape, it is just more noisy.
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|
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Figure 6.4 Bar Chart for Test 3, [;, Smooth Data, Higher Order

Last, the Test 3 results, corresponding to the test functions described in sub-
section 6.2.5, are given in Tables C.3 and C.4 in Appendix C. The data from these
is summarized in the bar charts shown in Figures 6.4 and 6.5. The Gaussian and

W — 4 B-Spline kernels are included for comparison with standard kernels.

Since the Test 2 results represents the Test 3 results fairly well, the conclusions
are same. Overall, the higher order kernels do not gain very much, if anything.
They have regions where they are negative and drop off fast when sparsely spaced.
The primary gain would be realized if the number of particles per h was quite large

(Az/h quite smail).
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6.2.7 Non-Smooth Data. In this subsection, the previous work is exter.ded
to areas near a shock. However, the uniform spacing assumptions still remain. Cor-

sider Figure 6.6 and cquation (6.14)

1 2
Z,
$a+1

Figure 6.6 Non-Smooth Data Example

¢ ifr<uz,

f= (6.14)
q ifzx>z, .
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Near the shock

N 3 N
flo= S Az, W, = Azc, Y W/, + Azcy Y W),
Jj=1 =1

J=s+1
Let ¢ < s. Because W, is odd, terms from i + 1,...,s cancel with terms from
t—1,...,2t — s leaving
2i-s—1 N 2i—s-1
! (i
fl= Azc, Y, W+ Azey 3, W, = (co—a) D, AzW);.
J=1 J=s+1 i=1

The sum approximates the left tail area of the W’ curve. As ¢ — s the sum ap-
proximates more of the tail, approaching the area under the entire left half of the
W' curve. Note: ¢ > s just results in the opposite side of the curve. So then f!

approximately equals

Fox(e-a)l  Wde = (co—e)[W(zi—z,)— W(=xh)].

! —xh

By the continuity and compact support properties of the kernel, f/ is approximately

equal to (cg — ¢1)Wi,. Since the actual value of f! is 0, an estimate of the /; error

norm is
N N
ZA.’L‘,‘If:l = lco—CIIZAz,-W.-, = |eo — e ZA:::,-W,—, - Az W,
=1 i#s t=1

The summation term at the end of the last equation is an approximation of the
integral of W, which is just 1. Since ¢, and ¢; are arbitrary and independent of the
choice of the kernel, the following is proposed as a measure of merit for kernels under

the {; norm

min(l — AzW,) = min (l - % Ko) . (6.15)
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The same steps can be performed to arrive at the following as a measure of merit

for kernels under the [, norm

min[W, (1 - AzW,)] = min [%K (1 - -‘;—I A)] . (6.16)

The values of K(0). 1—-0.7+ K(0), and K(0)* (1 —0.7+ K(0)) for the 18 kernels are

shown in Table 6.6. Note: 0.7 is used since it is an average value for Az/h in this

study.
| # | Name | Type | K(0) [1-0.7K(0) | K(0)(1 —0.7K(0)) |

1 | Gaussian B | 0.56419 0.605067 0.341373
2 | W4 B-Splines B |0.666667 | 0.533333 0.355556
3 | Cosine B 10575169 | 0.597382 0.343595
4 | Exponential H | 0.500556 0.64961 0.325167
5 | K —2 Exponential | H | 2.250277 | -0.575194 -1.294346
6 |1/X,2 H 0917133 | 0.358007 0.328340
7T 11/X4 H 0.837880 | 0.413484 0.346450
8 [1/X,10 H | 0.78646 0.449478 0.353496
9 | -X? H [0.75 0.475 0.35625

10} —z—e* P 0.403745 | 0.717379 0.289638
11 | 4 - X? P 0.375 0.7375 0.276563
128 -X° P 0.33333 0.766667 0.255556
13 | & — 2 Gaussian B | 0.846553 | 0.407413 0.344897
14 | L Gaussian B 0.785348 0.450256 0.353608
15 | Q Gaussian B 0.643998 | 0.549201 0.353685
16 | T Gaussian B |0.580569 | 0.593602 0.344627
17 | Quartic-1 B |0.625 0.5625 0.351563
18 | Quartic-2 B 0.416667 | 0.708333 0.295139

Table 6.6 Kernel Value at 0

The data in Table 6.6 shows that the results are different under an /; norm than an
[, norm. For the [; norm, based on the column 1 — .7 * K(0), the hyperbolics (H)
perform the best while the parabolics (P) perform the worst. It should be noted
that many of the numbers are quite close, but not as close as for the {; norm. From

the last column, almost all kernels delivered similar results for the {; norm. The
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parabolics are slightly better (with one exception for kernel 5), but the rest are
then roughly the same. These ideas will now be verified against the step function
from Test 3. The results are found in Tables C.5 and C.6 in Appendix C and are
summarized in the bar charts shown in Figures 6.7 and 6.8. The lines with small

boxes represent the information above and the bars are from test 3 (step function).
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Figure 6.7 Bar Chart for Test 3, /;, Non-Smooth Data

Some general conclusions may be drawn from these figures. First, the K(0) results
(data given in Table 6.6) match very closely the norms from the test functions,
especially {;. This implies that the norm predictors from the K(0) work are good
measures of merit of a kernel (at least globally) for non-smooth data. Second, based
on the measure of merit and data in the figures there does not appear to be any
class of kernels that are significantly better than the others under both norms for
non-smooth data. The x — 2 Exponential has the least error. However, due to the

shape of this kernel (very sharply peaked) it is probably not a very good choice.

6-25
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Figure 6.8 Bar Chart for Test3, {3, Non-Smooth Data

Third, since the two kernels with « larger than 2 do not perform significantly better

than the others, it is recommended to use a kernel with « equal to 2.

6.2.8 One-Sided Kernels. Up until now only kernels that were even or
symmetric were considered, however there are other possibilities such as a.symmetrié
functions. Although there are an unlimited number of possible shapes, only trun-
cated and condensed one-sided kernels are considered here. The term truncated, is
used to indicate the same kernels from Table 6.2 given earlier, but with only one
side. The other side is taken to be 0. Of course, this makes the kernel discontinuous
at zero and must, therefore, have the derivative defined at zero (done later). The
term condensed, is used to indicate the kernels given earlier are shrunk down to half

their width and then shifted to one half plane or the other. The opposite half plane
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is zero. Also note, that the normalization constant for these one dimensional kernels

is exactly twice that given previously.

Following the procedure from the uniform space, smooth data analysis earlier

for these new kernels yields

N
f: ~ EA.’L‘jf]‘W'
=1
T; = a+i1Az; Az; = Az.

Assume, without loss of generality, K’(u) is a backward difference kernel so that

K'(u)=0,u<0.

(1) Assume f is constant. f=c = f =0.

cA:L'

N
0~ Y Az, f; W), = ZK’ ((z—] ) (6.17)
1=1

Therefore, K'(0) = — 32, K’ (l%) to exactly model the derivative of a constant

function. This should be zero for the condensed kernels.

(2) Assume f is linear. f =cx+d = f' = c. Also assume that K’(0) is

taken to be the sum above. This then yields

N A i, LA
o x Tan W - 82 5 e+ 0 & (- )5E)

i=1

cAz dA:z:
Y Z Z
1=1

N
CAI —; E K, (subtract 0)
Az Y ,
I=
= 1~ -Zz(%) K'(zéhf) (6.18)
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This check is exactly the same as the earlier measure equation, with a coefficient of
2 missing. However, since the normalization constant (hidden in A’) is twice that
given earlier, the previous measures of merit from Tests 1 and 2 should work for

one-sided kernels.

Although one-sided kernels are a little cheaper to compute with, they only give
results of order h instead of h%. This was reflected in Test 3 type results being worse
for one-sided kernels on smooth data. However, near shocks they should be better
since a one-sided kernel is analogous to backward or forward differences (ie. upwind

schemes). Consider the problem from Figure 6.6 and equation (6.14) again. Near

the shock

N s N
fi’ = ZAx]- fi I'V,'J = Aze, Z W,-'J- + Az Z Wi’j .
=1 =1

7=s+1

Let : < s. Because W} is backward, the second term is just 0. The first term equals

zero then if K'(0) = -2, K’(l%)

Now let ¢ > s + 1, then

0 = Azc, }iW,'J + Az ¢ f: W), = (ca—cl)zs:A:cW{j :

i=1 j=s+1 j=1
This is essentially the same as the two-sided kernel check in the area of a shock.
So a one-sided kernel should give the same results as a two-sided, error-wise, on
one side of the shock, but should be better than the two-sided on the other. Note:
a truncated one-sided kernel in the other direction is exactly opposite to the one

studied above.

The conclusion is that for non-smooth data, one-sided kernels should be better
near a shock. These results may be seen in the bar charts shown in Figures 6.9 -
6.12. The lines represent the information above and the bars are from Test 3 (step

function).
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Non-Smooth Data, 11 Norm, One-Sided Truncated Kernel
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Non-Smooth Data, 12 Norm, One-Sided Truncated Kernel
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Non-Smooth Data, 11 Norm, One-Sided Condensed Kernel

1000 - A Acoptve BN sociward W Forward  —— 1-7K(0) - 3

+ 0
0.5
-1
-1.5
f -2
2 3 4 5 6 7 8 9 10 n 12

13 14 15 16 17 18

Test 3 Results
&
K(0) Results

]
Kemels

Figure 6.11 Bar Chart for Condensed 1-Sided Kernels, [, Non-Smooth Data

6-31




Non-Smooth Data, 12 Norm, One-Sided Condensed Kernel
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The figures indicate that the one-sided kernels are all about the same and comparing
with earlier results do not perform better than symmetric kernels. Further, the mea-
sure of merit does not appear to work as well for these kernels (especially condensed).
One thought on this is that many more particles are needed with a one-sided kernel

than a two-sided to obtain good results. Since additional particles were not added,

the results are all quite poor.

6.2.9 Riemann Shock Tube Problem. The Riemann shock tube problem is
well known, and not described here (see LeVeque (32) or Smoller (57)). Because it
is such a good test for shock problems, it is used both here and again in Chapter
VIII. The test case in one dimension uses a line of equally spaced particles on [0, 1]

with a discontinuity at 0.5 and the values for all the particles on either side of the
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discontinuity are: (v - left, u, - right)

pr=1.0 pr =0.125
v =0.0 v, = 0.0
e =25 e, = 2.0
P =10 P, =01

Also the gas constant, ' = 1.4 is used. From earlier in this chapter, and the cor-
responding plots in Appendix C, as %‘2 varied, the Test 1 results fluctuated around
the desired value (1) for most of the kernels. Using MathCAD, an initial ratio was
selected for each kernel near 0.7 that was best for each kernel individually. The
reason for selecting 0.7 is there will be two neighbors on each side of any particle

and this is a fairly popular value in the literature. The initial values are found in

Table 6.7.

The column labeled 1.1*Az/h in Table 6.7 is used for determining M, = maz(Az/h)
as described in the smoothing length section earlier (equation (6.7)). Although a
variable h formulation was used in the tests, this ensures that & is not allowed to
become too small. The values for the coefficients of artificial viscosity are (2.5, 2.5)

and for the coefficients of wall heating (0.5,0.5). These are fairly standard values.

This test was performed on half of the kernels. Based on the analysis so far,
it was predicted that the bell shaped kernels would perform adequately while the
others would be questionable. Hence, only one hyperbolic, two parabolics, and six
bell shaped kernels were chosen to test. Most of the bell shaped kernels performed
admirably, while most of the rest aborted early in the calculation. The reason is
this is a very sensitive problem, especially when using SPH. Extra noise added by
poorer kernels can easily add to growths in shock spikes causing negative density,
negative energy, or particles to cross. The results at 1 microsecond for one of the

better calculations is shown in Figures 6.13 and 6.14.
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| # | Name Type | Az/h nph 1.1 xAz/h

1 | Gaussian B [1.00316 |.996849 | 1.103476
2 | W4 B-Splines B | 0.689898 | 1.44949 | 0.758888
3 | Cosine B ]0.673815 | 1.484087 | 0.741197
4 | Exponential H |3.0 0.333333 | 3.3

5 | k —2 Exponential | H | 0.666667 | 1.5 0.733333
6 |[1/X,2 H |[0.757363 | 1.320144 | 0.833099
7T 11/X4 H [0.777197 | 1.286486 | 0.854917
8 |1/X,10 H ]0.791098 | 1.264131 | 0.870208
9 | -X? H ]0.799783 | 1.250274 | 0.879761
10| —z—€7° P | 0.807503 | 1.238386 | 0.8388253
11 [4-X* P |0.81096 | 1.233106 | 0.892056
1218-X° P 0.816495 | 1.224747 | 0.898145
13 | £k — 2 Gaussian B 0.666667 | 1.5 0.733333
14 | L Gaussian B [0.666667 | 1.5 0.733333
15 | Q Gaussian B {0.739626 | 1.352035 | 0.813589
16 | T Gaussian B [0.769779 | 1.299073 | 0.846757
17 | Quartic-1 B | 0.685996 | 1.457735 | 0.754596
18 | Quartic-2 B [0.733263 | 1.363767 | 0.306589

Table 6.7 Initial Particle Spacing for Shock Tube
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Figure 6.13 Shock Tube Results, Selected Kernel
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Internal Energy vs. X
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Figure 6.14 Shock Tube Results, Selected Kernel
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Error norm results for the selected kernels are shown in Table C.11 in Appendix
C. For more details on the calculation of the errors see equations (8.10) and (8.11)
and the surrounding material in Chapter VIII. The data in this table is more easily

seen in Figures 6.15 and 6.17.

Density Relative Norm Comparisons

20062 T
1 80602
o ).60E-02 4
Q
§ 1.4ER
c 1.20602 1 B xemn?2
[
é) 1.006-2 [ xem2a
g 8.00e03 + mKGﬂ3
;5 . 1 H# xem 15
ko) E kem 16
& scew +
El kem17
2.00603

0.00E+00 -

Figure 6.15 Shock Tube Results, Density Comparisons

Some general conclusions may be drawn from Figures 6.15 and 6.17. First, when
using kernel 2 (the B-Spline), the results are slightly better when using the recom-
mended starting ratio of 0.6899-instead of 0.6667 (kernel 2a). Note: a starting value
of 2/3 is common in the literature. Second, the Q-Gaussian (kernel 15) performed
the best, but the results for these five kernels are so close that all should be con-
sidered equally good. Third, using hyperbolic or parabolic shaped kernels is quite

risky, the problem may abort, and they are not recommended.
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Figure 6.16 Shock Tube Results, Velocity and Energy Comparisons
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Pressure Relative Norm Comparisons
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Figure 6.17 Shock Tube Results, Pressure Comparisons

6.2 Conclusions

Much of the data and information in this chapter speaks for itself. However,
in this last section some comments are made regarding the data and, in particular,

the better and poorer kernels.

o £ — 2 kernels. Taking a kernel with a wider x, such as the Gaussian, and
modifying it to make s smaller seems reasonable. However, the process used
in the x — 2 Exponential and x — 2 Gaussian is not very good and should be

avoided because the resulting kernel is too highly peaked.

¢ For smooth data almost any bell shaped kernel provides good results. Of the
nine studied, the x — 2 Gaussian was the poorest. Although the Q Gaussian
performed the best, most of the others are so close as to be considered tied for

best.
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Overall the Test 2 equation appears to be a quite good measure of merit for
smooth data kernels. It matched the test data well and is easy to calculate

using some math package such as Mathematica.

For non-smooth data almost any kernel provides acceptable results. The
parabolics performed slightly worse, but it is not clear if it is a significant

difference.

The K (0) checks for non-smooth data appear to be a fair measures of merit for
symmetric kernels on non-smooth data. Since most kernels perform roughly
the same for non-smooth data, it is difficult to determine the exact quality of

this measure.

One-sided kernels in general perform poorer that two-sided in non-smooth areas
and much worse in smooth areas. This is not obvious as those kernels lead to
schemes analogous to upwind schemes. which are usually quite good in finite
differences. However, for now, based on this research, using one-sided kernels

is not recommend.
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VII. TIME SCHEMES

This chapter addresses temporal discretizations that can be applied with the
SPH spatial discretization for the complete implementation of the method. It re-
lies on some of the analysis performed in Chapters III, IV, and VI in developing
these schemes. The discussion in the previous chapters has only involved the spatial
derivatives and function approximation aspects of SPH. These are the parts that
primarily make up SPH, but they leave a system of ordinary differential equations
(in time) to solve. Therefore, a time scheme must be added to the previous analysis

to discretize the Euler equations completely.

In this chapter both higher and lower order schemes are developed. The higher
order schemes are Lax-Wendroff, Central, and Shu; all of which are second order in
time. The lower order schemes are Upwind and Lax-Friedrichs; which are first order
in time. The main purpose of this chapter is to simply introduce these ideas to SPH
and show that several times schemes are available. The Lax-Wendroff is probably
not going to be very useful for production type SPH computer codes, but should
prove quite useful in algorithm development. The Central and Shu schemes are
both good choices for the larger problems. By themselves, the lower order schemes
are probably not of much interest; however, they are an integral part of the hybrid

schemes developed in Chapter VIIL

There are several variations to the Euler equations that may be used in HVI
problems; for the analysis in this chapter a one dimensional form given by Anderson

(1) or Zukas (72) is used:

.. ) Dp ov

; A 7.1

Continuity Equation Dt "5 (7.1)
Dv 19P

ion : — = ——— 7.2

Momentum Equation Dt 92 (7.2)

P
Energy Equation : %;— = —;% (7.3)
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Dz

Particle Motion Equation :

The discussion to follow also refers to the general conservation equation and the one

dimensional, first order wave equation; they are respectively

u+[fW)e = 0 (7.5)
ur+au, = 0. (7.6)

The work in this chapter concentrates on three explicit methods. However, im-
plicit, predictor-corrector, or additional explicit (such as Runge-Kutta) type schemes
could also be applied. The cost for the implicit methods probably make them un-
usable for many of the large scale problems associated with HVI. This is because in
SPH each particle has a variable number of non-zero contributing neighbors. Thus
the use of banded solvers is eliminated and full matrix solvers are often quite ex-
pensive. Some preliminary experimentation was done with a Heun second order
predictor-corrector, but the initial work showed no significant improvement over a
central time scheme (described below). Hence, further development of this method
was not done at this time. Lower order explicit Runge-Kutta methods are essentially
what is being considering. The forward Euler method is not used because it is first
order in time and forward time/central space is often treated as unstable in finite
differences (although it is actually conditionally stable). So forward time/symmetric
kernel space would probably not be a good choice in SPH. Higher order Runge-Kutta
methods could be used, they just require additional function evaluations and storage.

This might be a problem for large scale problems.

So the effort is concentrated on the three main schemes: Lax-Wendroff, Central,
and Shu. All three are used in finite differences, often with good results. Central
time has been in use with SPH since its inception while the other methods are being

used here for the first time with SPH.
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7.1 Laxr-Wendroff

This scheme was first developed by Lax and Wendroff (29) in 1960 and it uses
a Tavlor series expansior. approach. In the finite difference literature it is one of the
most prominent second order schemes. The scheme is introduced here using the first

order wave equation and then derived using the SPH form for the Euler equations.

7.1.1 First Order Wave Equation.  The Lax-Wendroff finite difference form

for the first order wave equation is

u

2 A42
o= = 2R — )+ SS T, 2 b (1)
This method is second order in both time and space, can be written in conservation
form, and is conditionally stable. As seen above, the first order space derivative uses
a central space form. The same flavor may be obtained in SPH by using a standard
symmetric kernel. The second order space derivative is also a central difference form.
This too is analogous in SPH to using a symmetric kernel, but requiresi W’ to be
smooth and have compact support. Most of the bell shaped kernels discussed in the
previous chapter fit these requirements quite well. The SPH form of Lax-Wendroff
for the wave equation is defined as
aAt? N

o X Azjuf Wi (18)

i=1

N
utl = ul — aAt ) Azjul W +

t i 5
Note that W and W can be the same kernel, but do not have to be. An intriguing
variation is obtained if the SPH function approximation is used for u in equation
(7.8) and just one kernel is used. Collect terms to obtain

a? At?
2

N
ultt = 3" Azjul |Wi; —aAtW], +

s=1

wyl . (7.9)
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The formula in brackets in equation (7.9) is simply a Taylor series expansion of
W(r, — r, — alAt) to three terms. This makes the right hand side of equation {7.9)
equivalent to the SPH function approximation for u, using u; at time ¢, and r at

time ¢4 in the kernel.

In order to extend this work to SPH one needs to look beyond the formula for
Lax-Wendroff given earlier to the idea behind the method and how it was derived.

*! is expanded in a Taylor series around ul. The first order time

Quite simply, u}
derivative is replaced by a spatial derivative according to the PDE. For the second
order time derivative, take the derivative with respect to time of the PDE and rear-
range terms until a form with only the function and spatial derivatives is obtained.

Of course, this is rather simple for a linear PDE, but for a non-linear system it is

much more complicated.

7.1.2 Euler Equations.  Following the expansion and reorganization ideas
described above for each of the conservation equations, SPH Lax-Wendroff forms the

Euler equations may be developed.

Continuity Equation

Dp? | AR D%pr

n+l n 3

Op v

Dt ”az

D» D (Dp\ D Bv) _ Dpow D [dv
Dtz Dt(Dt) = Dt\ P8z) T "Dtaz ’Di\ez

_ [\ 8 (av) 9 (o), 9 ( ov

= P\oz) "Poar\at) ez \oz) TPz \U5

B a_vz__fa_@+av+a v a (dv
= P\oz) “Paz\at "V8z) P8z \"az) ~ oz \ oz
_ @2_3(29)+ ooy’

=P T ”az Dt p T




_ o (2,8 (_1aPY _ or\* 2 (19P
= P\or Por p Or g dr or \ p or

Use the forms derived above to obtain for the continuity equation

Jv At? v o [10P :
n+l = t —_— AR ) 4 — O 3 . -.I
P, p.+A( dr)‘+ 5 P (ar) +Bx(pd.r) (A7) . (7.10)
Momentum Equation
Dv! A2 D*r
o+l n 1 : 3
U] = v} + At Di + 5 D2 + O(At”)
De _LBP
Dt = pox
D _ D (bvy D 1oP) _ DU)op 1D (oF
Dt~ Dt\Dt/ D por ) "Dt 9z p Dt oz

_ L(0P\Do 12 (3P 2 (0P
T p*\ozr ) Dt pot\oz pdz \ 0z

L (o) () 12 (o) o (b .
- EXYACE pdr \ ot p \ 9z? a

oP 0P6p P de (3P)( v 8p)

9t 0p ot deot 9 )\ P8z Yoz
B
p Ot dJr
o [OP 9p aP dp v 3% d*p
5 (%) = (G) (o5 32) + (5) (ot o= 32)

o PO _ Oe dvde) .o
9z p oz '0z' 0dzoz '

Use equation (7.12) in (7.11) to obtain
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D-c v (0P L opP a* + opP It + P (opP d*e
Dt~ | p\or? p \ dp ) \dr? dp ) \Or? p? \ de ] \Or?
v (OPY [ 9% 1 [OPY\ [ Ov v [ O°P dp
t-l==)ls=SiH Y- l5ils) -5 -
p \ Oe r? p \ Or Jr p\0rdp/ \Jr
3P ov 2({OP\ [0p)\ [Ov P [ov 2P
15 ol il Byl B Bevll B Bevnll Bnaliar s Beoull B Brme
drdp) \Or p\0p/) \Or) \Os p* \dxr ) \drie
+v o*pP Jde + l OP\ [ov\ O (P
p \drde dr p \ Jde or) dxr \ p
N L (OPY [Ov) [3de (7.13)
p \ Je dr ] \dr '

oP IP dp + 9P de
oz dp dr  Je Jr

5 (o) - () (3)+ (55) (52)

(2P a_e) aP\ [ Pe 1)
dzrde ) \ Or + e ) \8z? ‘-

Now use equation (7.14) in equation (7.13) and simplify to find

D _ 1 (%) (0P, POP\ 1 (30) 0 (0P PoP
Dt — p\dz? p(’?p p Oe p \0zx /) 0z "ap p Oe |

il

Use the forms derived above to obtain for the momentum equation

et = 4+ At __.l_aP H+A_t21 Qfg @..}._]iéf
‘ = 7 2 ar? ”ap p Oe

i i pdr). D) E
w\ a ( aPp PaP\]"
— ) —\|p—+ - At3) . 7.15
+ (31) Jr (p()p * p Oe )]. +0(at) (1.15)

Energy Equation

De? At? D%e?
n+l o en : .
€ & +ALt S5 Dn

1

De P ov

Dt p oz

+ O(AP)

7-6




De D (De p( Po\y _ D)o PD (o
it~ BT(EZ) - b‘t('?ﬁ?) T 7Dt or oDt (az)
s (@)J(Q&) (i’:\ -Ei(@;) _ﬂ(z’;)
p \ Dt Jr p> \ Dt/ \or) pot\or p \Or?
L DP\ (o P [\ PO (o O
- @ &) 55 - TaGeE)
P o ( 8v) P (0%)
+—-—lr—) - — | —
pdr \ Jr p \Jdr?
_ _l(%) (éz)_£<0‘>2_£i<_’£)+f(ﬁ>z
p\D Jr Jr p dr \ Dt p \Or
L (o /DP\ P 3 [10P -
- (3 @) 5% G 1o
bp _ oP 9P _ (?ﬁ)(?ﬁﬂée)ﬂ?f) (0_+<’_)
Dt ot | Or op) \ot "~ or \ae ot " dr
dP\ 7 De R
- (()p) (de)\Dt) (17

["se equation (7.17) in equation (7.16) to obtain

D 1 (9r) (9P (_ ov\ L (0u) (9PY(_POu\ PO (10P
Dt? p \Or dp rr p \Or Jde por pdr \pdr
v\ [(aP L P (aP\], Pa (10P
dx 3p p? \ Oe p Oz pax

Use the forms derived above to obtain for the energy equation

elt! = el + At _Pov n+A o)’ aP+£ oF
' B poz/, 2 oz dp  p* \ Oe

O R

One SPH Form. Based on the three equations developed above, (7.10). (7.13).

fl

and (7.18) the SPH equations may now be derived for these. Since for any derivative
there are many SPH forms, there cannot be just one Lax-Wendroff SPH form. The

one included here uses symmetric forms of the equations where possible to help
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maintain conservation.

o? 1[0 _9p 1 X
St = P = - n : ~ Wl 7.
: 0.73 [ax(p ) { a:r] p?§m1 t] ((19)
o oP® 2 51" n n
S = 1 P* _ 1 3‘(Pp) pa + _3% 1 9P
dz \ p}? Oz pr | Ozx? 0x?|, oz pt Oz
Y m, n n 1" Y m, r '
~ Z’;J‘(Pj‘Pi)mJ"*':‘ Z“‘,%(P: ;) Wi
1=1 p1 7=1 p]
N n A
P?
; 7 (p.? p? . t]] ( )
- pi Oz j=1 ! PJZ' p 4
AT v 1 32(vp) (qu 2 Ovf Op7 al m; n ny !
S = dz? E[ 9z oz . —Eax Jz -_]z::l??-(v’ = v )W
2 1 al n ! al 2 n n /
~n —nz m; (‘U - v])vvij _(p: - p])‘,‘/ﬁ] (7 22)
L =1 P;j
d oP* PropPr N aP\" P (6P
S n = —_— n_' L 3 ~ . - J WI .
7= o (05 ) L [(ap),-*( e (6” (723
Prove 1Y (P* Pp
AR Bk B VR —t n__ oMW )
561 P? 61‘ 2;771] (pf + p?) (vx v]) %] (7 24)
n+1 n At2 n\2 ny\2 n
At = gl L= ALSIT 4+ —(SIFP| + - [ S17)%p} + 52| (7.25)
At? oP P" (0P
p+1 - r— n - o n
o = -+ S 2 ()]s
+ pl—,,Sl? ssy} (7.26)
At? oP P (OP\"
’f‘+1 = n - ny2 -
. " 4 ALSE + {(51 ) [(ap),. +2 (8)]
B 52"} (7.27)
MvRE
t
2 = 2 4 Atol - -Az—ssr (7.28)




7.2 Central Time

The second time scheme considered is much simpler: using the central time
approach. This is a rather easy to apply and a relatively old technique in SPH. It
can be derived using either Taylor series expansions or the midpoint quadrature rule.
The scheme is introduced using the general conservation equation and then derived

using an SPH form for the Euler equations.

7.2.1 General Conservation Equation. The central time finite difference

form for the general conservation equation is
uttt o= wh - 2A¢ f(uM): + O(A). (7.29)

This method is second order in time, can be written in conservation form, and is
conditionally stable. The method is derived below using a Taylor series form. Using

the two Taylor series expansions

At? At?

u™ o= w4+ At(u), + —Q‘(Un)tt + T(“n)m t+... (7.30)
At? At

uTt = ut = At(u), + T(u")“ - —6“(“")"! +.... (7.31)

Subtract equation (7.31) from (7.30) to obtain the central time form

2A88

o= W™ 4 2AL(u), + s

(u")m +.... (732)

Substituting the general conservation equation (7.5) into equation {7.32) for the

temporal derivative term results in the form given earlier in equation (7.29).

7.2.2 Euler Equations. The final form of this method has just a first
order time derivative which is replaced with a spatial derivative using the general

conservation equation. So there is nothing special to applying this technique to the
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Euler equations or in SPH. Hence, any SPH formulation for the spatial derivatives
will work by directly substituting it into the general form (7.29). As with other time
schemes. maintaining conservation is important., so symmetric forms of the SPH

equations are usually best.

It was discovered that a common practice in SPH is to not use a true central
time for all field variables as it is more costly, especially in memory requirements.
Two variations are investigated which will be called approximate central time and
near central time as well as a full central time approach. For full central time, two
levels of some of the field variables are needed (at least p, v, €, and ). This should
be the only additional cost of using a full central time approach; still it is sometimes
not used. The other two forms use only one level of storage, but two passes through
the particles. The first for velocity updates, the later for the remaining updates.
This does not add any cost, just some additional code. This method is known as
the approximate central time. The near central is the same as the approximate
central except it does a correction for particle position between the two passes and
recalculates the kernel for the second pass through the particles (z). It was also found
that some people use an even simpler form with only one storage level and one pass
(which is called faux central time here). However, this method is not recommended
as it is essentially a forward time/central space type method (which is only first
order and unstable for the usual time restriction, At/h < constant). These forms

may be more easily understood symbolically

Full Central Time: o™ = ™+ F(ph et o)

P = 4 R

en+1 = en—l + Fa(pn.’ en, vn’ xn)
a:"“ = .’E"-l + F4(v")
Near Central Time: v = " 4 Fi(p et )

pn+l = pn—l + Fg(vn,.’in)




o= 4 Bt
Approximate Central Time: vt = vt 4 FR(p e e
P = 4 Byt Y
et = el 4 Fy(prh el pn n )
= 4 Ryt
Faux Central Time: vt o= v 4+ F(p" et o)

pn+1 — pn—l + Fz(v"‘z,x"")
en+l - en—-l + F3(pn—l,en—l,vn-2’zn-—l)

.’L'n+1 - xn—l + F4(vn—2)

The following is proposed as the complete discretization for full central time

N
o= AT 4 288 Y my(of - o) Wi(at - af) (7.33)
vt
it = Pl - 2At f: m; (ﬂ_+ < )W'(z'-' —z3) (7.34)
' ! i=1 ? (p?)z (p?)z ' !
n+l n-1 A Y Pjn IJin n n WI n n 735
1% = e + thj =t (v} —v}) (:z:,-—:cj)(. )
= (p3)?  (p})
Pt = P 4+ 2At7. (7.36)
7.3 Shu

The third scheme considered here was first developed by Shu (55) in 1988
and designed to be used with Total Variation Diminishing (TVD) finite difference
schemes. Actually, the version presented here is just part of an entire class of TVD
multilevel schemes proposed by Shu. This particular form was chosen out of that
class because it was only 2-level and second order. Although this form rarely appears

in the literature for finite differences, it seems to have some good potential. To my
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knowledge this is the first time this scheme has been applied in SPH. This scheme is
introduced using the general conservation equation and then derived using an SPH

form for the Euler equations.

7.3.1 General Conservation Equation.  The Shu finite difference form used

here for the general conservation equation is

4 ¢
un+l = 5un + %un—-l _ g‘Atf(un)z + gAtf(un—l)r_ (T

-1
[
-1
~—

This method is second order in time, can be written in conservation form, and is
conditionally stable. However, it is not readily apparent that the method i> second
order or that it is even consistent. Hence, the method is derived below. Note: ie
scheme is derived differently from Shu who derived the entire class as a whole. Start

with the following three Taylor series expansions

At? At?
urtt = + At(u")t + —-2—(u")u + T(u")m +... (738)
t)? t)
utt = v o+ ‘ZAt(u"’l)t + (3%—)—(11."_1):: + (2§) (Un—l)m +... (7.39)
At? At?
un—1 = u" _ At(u")t + —2—(u")tt — —6—(u")m +... . (740)

Subtract equation (7.40) from (7.38) to obtain the central time form

2A83

u™ = ™l 4 2A8(uM), + 5

(u")m +.... (741)

Form the following weighted sum: # * Eqn (7.38) - 1 * Eqn (7.39) + 2 * Eqn (7.41)

to obtain
4 1 8 2
Un+l = gu" + gu"'l + g At (u"), - g At (u""l)g + E y (742)
2 4
where E = g Atz [(u")“ - (Un_l)tt] + I‘g At3 [(Un)“t - (u"_l)m] + O(At4) .

But, (u")u bl (u"'l)u = At (u")m + O(Atz)
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and (U™ )eee — (Un_l)m = At(u")un + O(Atz) .

£ [(4™)eee + O(AL)] + 14—5 AL (W) + O(AL)] + O(AL)

2
E = -A
) 5
AL (u) + O(ALY) . (7.43)
Substituting the general conservation equation (7.5) into equation (7.42) yields the
form given earlier in equation (7.37). Also, as seen in equation (7.43), the method

is consistent and second order.

7.3.2 Fuler Equations. As with central time, this method ends up with
just a first order time derivative which is replaced with a spatial derivative using the
general conservation equation. So there is nothing special to applying this technique
to the Euler equations or in SPH. Hence, any SPH formulation may be chosen and
directly substituted it into this form. As with other time schemes, maintaining
conservation is important, so symmetric forms of the SPH equations is usually best.

With that in mind, the following is proposed for the complete discretization

4 1
prtt = —pf + —pi! +At2m,[ (v} = o}) W'z} — z7)
5 5 =15
2 - n— 1( n— n—
- ST = ) Wil - ] 1)] (7.44)
4 1 N 8 ( Pr Pr
n+l o 2 -1 At VW (" - "
v 5o % Zm’[ (( o7)? +(p?)2) (8 =27
2 Pn-—l Pn—l . o
‘3((;:’-3-1)2*( ) Wt -2 (74)
2
4 L. N 8( Pr Pr
L P —At = 2 —_ (v = YW'(z" — "
& 56 t5eT + g Zl i [5 ((»03‘)2 * (p?)’)(v' v Wiz = 25)
2 Pﬂ- Pn_ n— n— n— n—
- ( 1)2+( ))(v, 1 — oY) WP - 2} ’)] (7.46)
4 l 8 2
,-‘+1 — ZI.m n 1 n__ -1 .
] % + - 5% + At [5 v; 51), ] . (7.47)
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7.4 Lower Order Methods

Since three second order time schemes were just developed, and SPH is usu-
ally second order in space, to develop a lower order scheme now seems to be going
backwards. However, the hybrid methods discussed in the next chapter make use of
both higher and lower order schemes, so the basic information will be provided here
on two lower order ideas. Since SPH was developed as a higher order method, lower
order forms were not already available. So two methods were chosen from finite

differences, a Lax-Friedrichs type scheme and an upwind scheme.

7.4.1 Laz-Friedrichs. The first lower order scheme comes from the idea of
the Lax-Friedrichs method. The general idea is to use a forward Euler time scheme
(first order) with a central difference space scheme (second order). However, since
that scheme by itself can be unstable under many time restrictions, a correction is
made. The variable evaluated at the previous time step is replaced by a central
average (second order in space). This correction makes the method not only condi-
tionally stable, but monotone as well. This idea was introduced earlier in the Total
Variation section in Chapter IV. Written for the first order wave equation (7.6), the

finite difference form is

nrl _ Ui HUL, (“?ﬂ - “?-1)
u; 5 + At SAT . (7.48)

As seen above, the spatial derivative is a central difference form. This is more or
less analogous in SPH to a symmetric kernel. Also in Lax-Friedrichs the previous
time step is replaced with a central average. The SPH function approximation with
a symmetric kernel can be used for this version. The resulting form for SPH is

N N
= Y AzjutWy + At Y Azjul W (7.49)

11
i=1 =1
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To see that this method is consistent, use a Taylor expansion in time

n+1 n n Atz n
Noting from equation (7.6), u, = —au, and using the errors obtained in Chapter III

for the SPH function approximation and derivative yields
N —

ul! = Y Az;ul Wy + O(h* hAz)
1=1

N
—a(u}); = —a ) Az;u} W + O(h* hAz).

i=1

—
=
-3
bad
il

Substitute these into equation (7.50) to obtain

N N
u?+1 - Az, u;-‘ "Vij + O(hz, L Az)] + At [_a Z A.t_,‘ u? VV,'J + O(h2, h AI):l
1=1 )=1

+ O(At?)

n+l

N N
> Az; u'Wi; — aAt ) Az;u} W + O(At?, h? At,Ath Az, h* h Az) .
J=1 Jj=1

Note: this shows the order of the local truncation error; and one order in time is
lost for the global error. So, the SPH Lax-Friedrichs form is consistent for the first

order wave equation and is first order in time and first order in space (if At =~ Az).

As discussed in the Total Variation Section in Chapter IV, the Lax-Friedrichs
method is in a category of very smooth techniques known as monotone methods.
These methods are all total variation diminishing (and stable). To show that this
method is monotone, let H(u;) be the right hand side of equation (7.49). Following
LeVeque (32) it is sufficient to show

MHw) 5 4 Y ki,
Juy

to prove a scheme is monotone. Consider two cases: k = ¢, and k # 7.
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o~
I
Ll

dﬁ'ﬁ = Az (W(0) - aAt W'(0))
au“
w@) > 0 usually, and assurned here
w'©0) = 0 usually, and assumed here
OH -
= Ar; >
dur Ar;, W) >0
k#1
IH -
au? = Al‘j (W,‘j —al\t "V:J)
W; >0 usually, and assumed here

If the kernels are chosen such that K’/K is bounded above by a positive constant,

say B, then for ‘a’ positive and At chosen sufficiently small

K’
_ <
7 < B
w’ alAt (K’ alt
“At(w) h (K) s b=l
W,’j — aAt W:J Z 0
IH
> .
= Sur 2 0

Hence for 5,‘; < B and “TA‘ < % the SPH Lax-Friedrichs method is consistent and
monotone (conditionally). Note if ‘a’ is negative K’/ K needs to be bounded below
by a negative constant. As shown in Chapter VI, there are several kernels that work
quite well and are similar to each other. For example, a combination such as the
T-Gaussian for W and the B-Spline for W will result in B = 2.5 creating a CFL

number for this scheme of 0.4.
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This scheme can be extended in two very useful ways. First, using the general

conservation equation (7.3) instead of the first order wave equation yields

uft! ZAJ, ul W,; + At ZAfo YW, . (7.51)
j=1 j=1

Second, by applying the key step, averaging the variable at the previous time step,
this notion can be extended to any time scheme; not just the forward Euler. This
second generalization can help other time schemes become more monotone, but does
not guarantee that they will be truly monotone. However, this powerful generaliza-
tion has much promise and to avoid confusion with a true Lax-Friedrichs form, the
process of averaging the field variable at previous time step is referred to simply as

Field Averaging.

One possible application of these ideas to the Euler equations is

av\" a A(pv)\"
pitt = P+ AL <—p£)_ = p +At( a: g;))
N ) 1}
x Y m; (W + At (o] - o] )w'] (7.52)
=1
19P\" L) Pap
ntl o _ n _— = p"— —rl 77
v vl + At pax)i v; At( e P
N ot Pr Pn
~ S my | LWy, - A [ = +—’——)W,-’~] 7.53)
5 m [ - e (o + o) (
Paov\" At[P [ 3p O(pv)
ntl . en _ = "4 T2 - A
& & +At< sz)i et 2 [p2 (”az dz
)

P Py "
(52-%2)]

e~ At (P PP n\ W
Z’"”[‘*“’"‘*?((pﬁ?*( )2)( "”")W"] ey
n+l

T o= ozl + At (7.55)

Q
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7.4.2 Upwind. The second lower order scheme considered is motivated
by upwind finite difference schemes: in particular, forward time/forward (backward)

space. Shown for the general conservation equation

, (7.56)

PN [ﬂualg ;f(u:‘)J_

The upwind scheme is relatively easy to apply since the spatial derivative is analogous
to a one-sided kernel function in SPH. Two types of one-sided kernels were discussed
in the previous chapter: truncated forms and condensed forms of a symmetric kernel.
A truncated kernel is where a symmetric kernel is used for r; — x; positive (or
negative) and the kernel is 0 otherwise. A condensed kernel is where a symmetric
kernel shrunk down to half its width and then shifted to one half plane or the other.
The other half plane is 0. So the SPH upwind scheme for the general conservation

equation is

utt o= ur —~ At [cf(u:‘)W(O) + f: Az, f(u]) Wi | . (7.57)

j=1

The extra term in the spatial derivative (involving ¢) will be discussed and derived
below. Following the work done in Chapter III, this is now shown to be a first order

approximation. Let

< fllug) > = fl(us) = /Q F(w) W(uo —u, b) du .

Expand f'(u) about u = u,, let = (u — u,), and use the normalization of W to

obtain

flu,) = /n F/(u) W(uo — u, b) du = /n F(z +us) W(~z, h) dz

2
f"(&)) dz

T

= [ Wb [Fw) + 2 f'(w) + 5
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- f'(uo)/nW(_x,h)dr
i+ () /Q tW(=z,h)dz

i +% /Q 2 W(=z,h) f"(€,) dz

= flu) + E.. (7.58)

where

E, = f"(u,) /ﬂ 1W<—r»h)d”% /n 2 W(=z,h) f"(&,) dz .

It is possible for the first integral in E, to be zero, as in the symmetric kernel case,
but only if W is allowed to be negative over part of its support. This is not usually
done, and would make a distribution theory analysis much more difficult. Hence,
that case will not be allowed at this time. So dropping the second term shown in £,

(as the error will go as the first term) yields

E, = /ﬂ cW(-z,h) f'(&,) dz , (7.59)

for £,€€). To obtain a bound on the error term E,, define

e, = & sup|f"(£)],
£eQdn

where (2. is the xh wide region around u,. Then noting that the kernel is non-zero

only when |z| < xh, the bound is

Bl = |[ eW(-a,h) (&) da| < [ Jal W(=2,h) 1" ()l d=
< /thW(-—a:,h)%dz: = eoh/Q W(-z,h)dz = e,h. (7.60)
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Therefore.
fllus) = filu,) +O(h) = /Q F{u) W(u, — u.h) du + O(h) . (7.61)

Following procedures similar to Chapter III. integrate by parts and then replace the
integral by a sum. For the condensed kernels these steps will be the same as the
symmetric kernel case. But for the truncated kernels. the integration-by-parts step
creates an extra boundary term. For the forward kernel that is —f(uo)W(O) (the
backward will be positive). Since for the condensed kernels W(0) = 0, the results

can be generalized for either type of kernel as

N
Flu) = sf(u)W(0) + 3 Az, f(u®) W), +O(h,Ar).  (7.62)

1=1

{ +1 if W(u) =0 for u < 0 (backward)
where ¢ =

-1 if W(u) =0 for u > 0 (forward) .

Note. from Chapter VI for these one-sided kernels,

N
W) = =Y Az, W),. (7.63)

1=1

But note
N . . R . .
-3 A W, ~ /Q Wiz —z)dz = <[W(0) = W(xh)] = <W(0).
1=1

So the extra term developed here and that derived in Chapter VI are equivalent to
within the order of the method. Thus either one may be used; but from the work in
Chapter VI, equation (7.63) might give a better result at a higher cost. However, at

this time cW(O) form will continue to be used.
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One possible application of these ideas to the Euler equations is

Jv dp  Ipr)\"
n+i1 g — -
P, = p+ At ( dr)‘. pi + At ( 32 o ).

N
o, + At{ [ prW(0) + > mJW,.’J] -~ [cp,’-‘v,"W(O) +
=1

N

= P+ ALY m(et — W) (7.64)
=1
oM = e 4 A —1-0—P = - % P?ﬁ n
' B p Or - pgax
N P?
u -At{ £ m ( ; )w:,]
1=1 p_]
P N
+l:c—VV Z (
P =1
N

o ()]
(G ] o

_ v?__\t[ 27
n A
el = el + At (~f‘9—”) = e"+:t[£2 (v@- a(ﬂv))
i p

2

-

&

S—W

i

p Oz ' 2 oz dz
X v8(§) AN ”
Jdz Jr ,
At Pt n_ ayi- n ‘ ‘ n
N . Pn _ N Pn .
+3_ mit Wil + el =S W(0) + 0f Y- m;—L=W),
j=1 P j=1 (PJ')
P" = v pPr .
—v]! 0 m, v —— W/,
p' ( ) ; AR (p;;)z J} }
A+ N Pn P
= ef'+— Y my ( b ) o - vl )W, 7.66
2 J: J (p]) + (p:. )2 ( ) ] ( )
.t:"” = I+ Atv}. (7.67)
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7.5 Summary

In this chapter, several time schemes were proposed for use with SPH. The
second order schemes are more likely to be used for most problems, because of their
higher order accuracy. However, the Lax-Wendroff form is more suitable for small
scale problems due to the cost of calculating the second derivative terms. The Central
and Shu schemes should work well for a vast majority of problems of all sizes. Since
quantitative comparisons between them were not made, the choice of which to use is
up to the individual user. The lower order schemes are of limited use by themselves,

but will be of importance in the next chapter.
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VIII. HYBRID METHODS

This chapter introduces the concept of flux-limited hybrid schemes from finite
differences to SPH as a way to handle shocks. Problems of hypervelocity impact,
among others, are often characterized by large areas of relatively smooth data with
intermittent areas of discontinuous data. When modeling problems such as these,
the largest concern often is how to handle the discontinuities or shocks properly.
This is also a concern in the consistency of a method, and as such was discussed in
Chapter III. Flux-limited hybrid schemes are much newer than the more traditional
artificial viscosity notion in finite differences, but in some case seems to perform
better. The schemes weight average lower and higher order methods based on the
closeness to a sensed shock. Therefore, the difference order time schemes discussed
in the previous chapter will be quite important here. In this chapter, the hybrid
notion is more fully described and the six SPH hybrid schemes are proposed and
tested against a baseline case. Under basic assumptions (no-frills implementation)
the hybrid schemes perform roughly the same as the baseline. This concept is not

ready for production SPH codes, but the basic foundation for the work is laid here.

8.1 Introduction

A category of techniques that handle discontinuities quite well is known as
high resolution methods. One of the main ideas found in these techniques is to use a
high order method away from the shock, while near the shock use a method that has
more dissipation. The reason for the greater dissipation is to control the oscillations

and stability while accurately resolving the shock.

Decades ago these notions gave rise to artificial viscous techniques applied to
finite difference methods. Some of the earlier work was performed by Von Neumann
and Richtmyer (66) and Lax and Wendroff (29). These were designed to control

fluctuations near a shock by mimicking higher order spatial derivatives (viscous
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terms) in a controlled manner. Through the years since then, several variations
were derived for finite difference techniques and more recently for SPH. However, it
was felt by some authors that it was too difficult to control this “artificial viscosity™.
Just enough is needed to smooth the oscillations, but not too much so that the shock

is overly smeared.

So, in the early 1970s, a new approach for finite differences was proposed
known now as the flux-limiter technique. These ideas were first popularized in finite
differences by Harten and Zwas (15). Quite simply, they involve using two different
techniques and a weight function (or limiter) to select which method to use. In this
way, a high order method (or flux) can be used in areas of smooth data while a low
order flux can be used near a discontinuity. A weight function, or limiter, is used
to determine which flux or what proportion of each to use. Hence, a hybrid flux
is developed. Using Fpy for the high order flux and Fy for the low order flux, the

hybrid flux can be represented as

F(U) = 8 F(U) + (1-0) Fa(U) . (8.1)

In this example, 8 is the flux limiter that would usually be contained in [0,1]. Equa-

tion (8.1) can also be rewritten as

F(U) = Fa(U) + 0[Fy(U) - Fu(U)]. (82)

The second term (involving #) can be thought of as an artificial viscosity term added
to the higher order method. This points out these two ideas may not be quite as

distinct as they originally may appear. For an introduction to these ideas (for finite

differences) see LeVeque (32) or Woodward and Colella (68).

As noted earlier, the artificial viscosity technique has been used in SPH for
several years now with some success. However, there are some concerns that it is not

adequate in all cases. For example, when modeling the Riemann shock tube problem
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(a classic test case described later), artificial viscosity is not enough to allow the SPH
continuity equation to be used. Instead, the less favorable density-by-summation
form must be used. It is concerns with test cases such as this, together with the
success of flux-limiter techniques in finite differences that influenced the choice to

propose hybrid methods for SPH.

Two general ways of obtaining a hybrid method are proposed in this chapter:
using a consistency argument and using two different methods. These are addressed

in the next two sections.

8.2 Consistency Approach

This notion is introduced in Chapter I1I, Non-Smooth Functions section (3.5).
The basic idea is to develop an SPH method that is consistent in areas near dis-
continuities. Since the work for this was already done, it will not be repeated here.
The results of that work can be written as the sum of the standard SPH method
plus a correction term. Although this is not quite the same as a flux-limited hybrid
method, at least not as it appears in the finite difference literature, it has the same
basic tenets. That is, in areas of smooth data one equation is used and near a shock
another. The limiter function is built into the derivation performed in Chapter III

and Appendix A.

Currently this approach is strictly an academic exercise. There has been very
little success in obtaining computational results on known test problems. There
could be several reasons both computationally and algorithmically. Some of the
more likely reasons are: poor time scheme, poor choice of time stepping, poor choice
of kernel, poor shock sensing algorithm, or poor choice of test problems. It is,
of course, conceivable that the algorithm, time scheme, etc. are not implemented
correctly. However, this was reviewed and it is less likely than the other reasons.

Hence, this approach will not be addressed any further here.




8.3 Two Method Approach

This approach follows the ideas of flux-limited hybrid methods from the finite
difference literature and uses equations (8.1) or (8.2) above. In this approach, the
high order flux is not of prime concern to us; since from earlier in this dissertation,
SPH was shown, in general, to be a second order method. So any of the second order
time schemes discussed in the last chapter should work well. The bigger concerns
are what low order scheme to use, do the two schemes match, and what to use for

the flux-limiter.

Low order schemes. Because SPH is usually considered second order, little

attention has been given to lower order SPH approximations. The most obvious
lower order SPH method is to use non-symmetric kernels. Although it is possible to
have a second order method with non-symmetric kernels, it is much more difficult. A
good example of a non-symmetric kernel is a one-sided kernel. This corresponds to
the notion of forward/backward differences, or more generally upwind schemes. So a
forward time with one-sided kernel SPH would be analogous to the most basic finite
difference upwind method. Another possibility is the field averaged time (either
central or forward) with SPH symmetric kernel. These also would be first order
time, first order space. They may smooth more, but are more easily applied in

higher dimensions. Both of these ideas were introduced in the previous chapter.

A good match. The best matches are when the two methods have several terms

in common so that they appear to converge to each other as a particle moves closer
or further from the discontinuity. In this way the combination is much smoother and
should not be effected as much if particles are more sparsely spaced. When selecting
the two methods to combine, more thought needs to be used than to simply attempt
every possible combination. Methods should be selected that by themselves are
reasonable (either high or low order) and that fit well together. These are sometimes
at odds with one another. For example, the central time/SPH space is a good high

order method that would match well with central time/upwind SPH. However, from
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finite differences it can be shown that central time/forward (or backward) space is
unstable (under usual time restrictions). Other examples of bad hybrid schemes are

available. but this chapter will concentrate on those that show promise.

Limiter Function In order to perform calculations, a limiter function needs

to be developed for SPH. Starting with work found in the published literature for
scalar conservation laws (e.g. Sweby (62)) and then expanding upon it for the Euler
equations proved useful. It is decided that discontinuities in any of the field variables
-p.t.e) should be captured. Also it is desireable that the method not be strictly for
e dimensional problems. This yields a flexible function that may be used for higher
dimension problems, although the exact implementation of this algorithm is done

only in one dimension here. Also note that efficiency is not taken into consideration.

The algorithm basically calculates a ratio of the local field difference to the
maximum difference ((u; — u;)}/Aumq.). This is then multiplied by a negative expo-
nential function based on how close the particle is to the sensed shock. This picks

up only relatively large discontinuities, but is sufficient for this problem.

Algorithm 1 SPH Fluz-Limiter 1

Given: ¢; and ¢,

Find: Pmins Pmazs VYmins Umazy €miny Emax

Define:

P = Pmazr — Pmin

U = Vmazr = Umin
e = €Cmar — C€min
end define

Before the SPH sums are calculated do:
mxk = mxj =i
6=0

while (Jz; — z;| < xkh) and j < ¢
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(152 > ) snd (|252] > )

then
6 —_ Pl TPQ
o
maj = j

if (|6] > €2) go to loop
end if
end while
repeat for v and e
repeat for p, v, and e for j > i to get mxk
loop: 0; = 6 x exp[0.5 — maz(kh, Tmzk — Tmzj)/(26R)]

end @ calculation
end

Instead of using Aum,: (p, 0, or € in Algorithm 1), where the maximum is taken
over all particles, one might want to use Aujy,,, where the maximum is taken as
the largest local maximum; ie. the maximum difference within the support of the
kernel. This would detect more discontinuities than the original form. Since shock
detection algorithms are not exact, the implementation is more of an artform than

science.

Note for higher dimensions this algorithm can be easily changed to find the
ratio () within the support of the kernel, thus extending the hybrid notion to higher
dimensions. Also note in some applications it might be advantageous to use a §;;
formulation instead of just 8;, althoug it was not done here. Some simple ways to
do this are to use an algorithm such as the one above and then use (8; +6;)/2, 66;,

or maz(6;,0;).

Based on the ideas discussed so far, some possible hybrid methods are now

presented. However, first a few notes on notation. The formulas given in the rest of




this section are for the general conservation equation

w = —[f(w). (83)

In the equations to follow, u?** = F(u") is used as one solution when F(U) is given
as in equation (8.1). Also, in the formulas to follow, W is used for one-sided kernels,
W for field averaged kernels, and W and W for just any symmetric kernel. Where
they appear in the same equation, the kernels may be the same, but the notation is
used to point out that they do not have to be. The methods were numbered 1-20
based on original plans. Methods 2, 4, 6, 8, 12, and 20 are discussed below. Methods
1, 3,5, 7, and 11 did not converge and are briefly discussed later. The remaining
numbers in the sequence (9, 10, and 13-19) were reserved for other methods originally

planned for development; but never actually completed. So start with Method 2.

8.3.1 Method 2. High order: SPH Lax-Wendroff/Symmetric SPH. Low
Order: Forward Field Average/Symmetric SPH.

This method combines the forward time with field averaging in the area of a
shock (8.4) with the SPH version of Lax-Wendroff away from the shock (8.5). The
low order method uses a first order time scheme with the second order space scheme.
The high order method should be second order everywhere. This is the first time
that a Lax-Wendroff type SPH approximation has been attempted.

N N
Fp = Eiju;'VV.-,- — AtZAl‘jf(u?)VV,-;- (8.4)
=1 =1
n al n 1 At2 al n\ 117"
Fy = u} — At Az f(u})W); + TZIA::,- f )Wy (85)
1=1 1=

This is similar to a classic finite difference technique. The one dimensional wave

equation analogy would be Lax-Wendroff in smooth regions with Lax-Friedrichs near

the shock.




8.3.2 Methods 4, 6, and 8. High order: Central Time/Symmetric SPH.
Low Order: Central Field Average/Symmetric SPH.

This method combines the central time with field averaging in the area of a
shock (8.6) with the central time away from the shock (8.7). Method 4 uses the
approximate central time formulation, Method 6 the near central time, and Method
8 the full central time. Each of these ideas was discussed in the previous chapter.
More than one form is investigated to see if there is any noticeable advantage to

truer central time forms.

N N

Fy o= Y Az 'Wy — 24t S Az, f(ul) W, (8.6)
=1 =1

Fu = w! — 2AtZAx, (W) W, (8.7)

j=1

The biggest advantage of this method is its simplicity. The two fluxes are very
close, with only the value at the previous time step different. The one dimensional
wave equation analogy would be central time-central space in smooth regions with a
modified Lax-Friedrichs near the shock. The reason it is a modified Lax-Friedrichs
is that the usual version uses forward time with averaging where central time with
averaging is used here. A more standard Lax-Friedrichs could be used when the full

central time is used.

8.3.3 Method 12. High order: Shu Time/Symmetric SPH. Low Order:
Forward Field Average/Symmetric SPH.

This method combines the forward time with field averaging in the area of a

shock (8.8) with the Shu time (see equation (7.37)) away from the shock (8.9).

N N
Fr = Y Az;u} Wi — At Az, fu) W (8.8)
“ J.__l
4 n 1 -1 8 n—1
Fy = U + = s + = At ZA::, fu)W;; - —At Z:A:t, flu}7)W,  (8.9)
=1 =1
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The two fluxes are very close, and easy to combine. The Shu time is also useful in

stabilizing a method (Shu proposed this to go with Total Variation Stable schemes).

8.3.4 Method 20. High order: Approximate Central Time/Symmetric
SPH. Low Order: Central Field Average/Symmetric SPH.

This is the same basic form as Method 4 (equations (8.6) and (3.7)). The
difference is an option is given to vary the amount of smoothing obtained from the
lower order method in each conservation equation separately. This version is derived
because in the current SPH methods where there is no smoothing in the continuity
equation, artificial viscosity in the momentum equation, artificial viscosity and wall
heating in the energy equation, and no smoothing in the particle motion equation.
This allow me to hypothesis that the other hybrid methods may have too much

smoothing in some equations; this corrects that possible problem.

8.3.5 Methods that Failed to Converge.  There are several hybrid methods
thai were attempted because they seemed like good choices at the time, but they
would not work when applied to the Riemann shock tube problem. This, of course,
is not conclusive evidence that they will not work on other problems. However, it is

felt that it is better to use the methods that work for a proven test case.

e Method 1 - High order: SPH Lax-Wendroff. Low Order: Forward Time /
One-Sided SPH.

e Method 3 - High order: Approximate Central Time/Symmetric SPH. Low
Order: Approximate Central Time/One-Sided SPH.

e Method 5 - High order: Near Central Time/Symmetric SPH. Low Order: Near
Central Time/One-Sided SPH.

e Method 7 - High order: Full Central Time/Symmetric SPH. Low Order: Full
Central Time/One-Sided SPH.




e Method 11 - High order: Shu Time/Symmetric SPH. Low Order: Forward
Time/ One-Sided SPH.

e Method Conl - High order: Approximate Central Time/Symmetric SPH. Low
Order: Approximate Central Time/Shock Consistently Corrected Symmetric
SPH.

The one-sided methods did not work very well for this test case. This is possibly due
to similar problems with using artificial viscosity in SPH. Namely, some distortions
are smoothed out while others, like a spike (both positive and negative), grow un-
controlled until a non-physical result (such as negative density or particles crossing)

occurs.

8.4 Sample Calculations

For all the methods in the previous section, the one dimensional Riemann shock
tube test problem is performed. This test does not conclusively eliminate the poorer
methods, but casts doubt on their use as general techniques. The Riemann shock
tube problem is well known, and not described here (see LeVeque (32) or Smoller
(57)). For the test case in one dimension, use a line of equally spaced particles on
[0, 1] with a discontinuity at 0.5 and the values for all the particles on either side of

the discontinuity are: (u; - left, u, - right)

=10 pr =0.125
v;=0.0 v, =0.0
e =25 e, =20
F=10 P =01

Also the gas constant, I' = 1.4 is used. The solution is described in several places

including (32) and is shown on the plots to follow and those in Appendix D.
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In addition to performing this test and obtaining qualitative results (plots),
error norms are calculated. For every method, three relative norms are calculated
for each of density, velocity, energy, and pressure using two different sets of points.
This seems like overkill (and may be), but the information is useful and can be easily

summarized. The three different norms are [,, l;, and [, calculated as

Lo ZRilf(e) - S(a)

S ()] e
N (f(z;) — S(z;

- B o
max; | f(z;) — S(z;)|

foo max; | f(z;)| ' (&1

The two different sets of points are: 1) 1000 uniformly spaced points and 2) using
the SPH particles as the points. Note that the two sets of points provide roughly the
same results, demonstrating the approximating nature of this method (as opposed to
an interpolatory nature). Further note that the /., norm proves not to be very useful
as it can be roughly determined by examing at the difference between the calculated
and true solutions on the plots to follow and those in Appendix D. Therefore, in
the next section only the /; and [, norms for the 1000 uniformly spaced points are

summarized. The entire sets of data may be found in Appendix D.

The initial problem setup uses a fixed h, the B-Spline kernel (kernel # 2 from
Chapter VI), CFL number of 0.2, and no wall heating. Although there are better
settings for the baseline case, reducing the number of variables and comparing the
various methods in as basic a form as possible is more appropriate at this point in
the analysis. Therefore, items such as wall heating and variable h are deliberately
left out to avoid clouding the comparisons. Two difference computations are made
for each method. First, 600 particles are used with Az = 2h/3. This is similar to

many calculations used by other analysts and in the published literature. The second
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set of calculations uses 816 particles. In this case Ar = 0.5h everywhere except near

the shock where Ar = 0.4hA.

8.4.1 Baseline. In addition to the methods described in the previous sec-
tion. the following is used as the Baseline: Approximate Central Time with density-
by-summation. This form for calculating density in SPH has been used often and
results for the Riemann shock tube problem have been published several times (in-
cluding Monaghan and Gingold (37)). However, using the density-by-summation
has some accuracy concerns in certain types of calculations, especially those involv-
ing metallic equations of state such as HVI problems (69). However, up until now,
obtaining density using the continuity equation was not possible for this simple test

case. Also artificial viscosity (with coefficients 2.5 and 2.5) is used for the Baseline.

For the Shock Tube Test, the results at 1 microsecond for the Baseline are
shown in Figures 8.1 - 8.4. The data shown in Figures 8.1 and 8.2 uses 600 particles
uniformly spaced. The data shown in Figures 8.3 and 8.4 uses 816 particles with

higher concentrations of particles near the shock.

The 600 particle case, shown in Figures 8.1 and 8.2, is a fairly good match
to the analytic solution, except for the density and energy near the contact surface.
These shortfalls cause the shortfall in velocity and the extra step in the pressure
contour. The shortfalls are caused by not having enough particles in that area to
accurately represent the derivative. This behavior can be expected whenever the
interparticle spacing becomes larger than A (Chapter VI). This happens much more
often when using a fixed h form of SPH, as was done here. The overshoot in energy
(the spike) can often be controlled by using a wall heating term. This was not done

for all the examples in this dissertation.

The 816 particle case, shown in Figures 8.3 and 8.4, is an excellent match to
the analytic solution (except for the small energy spike). This increase in accuracy

is a good indication of the method converging to the proper solution as Az — 0.

8-12




Density vs. X

—————Calculation - Analytic
1.0
. NP =600
0.75
g . Time =0.10
£ _
S o] lter = 665
o 0.5 -
:
0.25 L
:1 y
N B B B B D S S A N Baseline
0.0 0.25 0.5 0.75 1.0
X-Coordinates
Velocity vs. X
Calcutation ——-— Analytic
/ !
0.757] NP = 600
i ! ‘ Time = 0.10
2 i
'g 0.5 i
@ i Iter = 665
> —
0.25
g
00T T T 71 — T T T L LA B S | Baseline
0.0 0.25 0.5 0.75 1.0

X-Coordinates

Figure 8.1 Baseline Shock Tube Results

8-13




Internal Energy vs.

X

- Calculation - Analytic
) NP = 600
> . :
(o .
@ 25 ) Time =0.10
w } '
© B -
e \ 5@ Iter = 665
9- T \\
£ ] \l\ ! i
Lt
2.0— \.‘:‘ |;
_TI!F[ITTI:\[TEITIITIII[ Baseline
0.0 0.25 0.5 0.75 1.0
X-Coordinates
Pressure vs. X
——— Calculation —————- Analytic
. |
T NP =600
0.75 \
® - \ Time = 0.10
: —
3 = \
2 05— | lter = 665
a i |
1 R
0.25
T T T T T T T T T . [ R B R Baseline
0.0 0.25 0.5 0.75 1.0
X-Coordinates

Figure 8.2 Baseline Shock Tube Results

8-14




Density vs. X

Calculation - Analytic
1.0

1 NP =816
0.75

= . Time = 0.10
e i

8 0.5 lter = 678

0.25_ L ...... ,;;
I T T T —lil v Baseline
0.0 0.25 0.5 0.75 1.0
X-Coordinates
Velocity vs. X
Calculation ——-———- Analytic

0.757 NP =816

2 i Time =0.10
S 0.5

o ] Iter = 678
> ]
0.25

0.0 T T T 15T T T ; R S S | Baseline

0.0 0.25 0.5 0.75 1.0

X-Coordinates

8-15

Figure 8.3 Baseline Shock Tube Results - Extra Particles




Internal Energy vs. X

Calculation e ANlYHC
3.0 \)
] | NP =816
>
=) . .
@55 Time =0.10
w —
g Iter = 678
S s
= '
50 \\ e
T T T 1 T T 11 \}7-1*:1 T T T T T T Baseline
0.0 0.25 0.5 0.75 1.0
X-Coordinates
Pressure vs. X
Calculation —————— Analytic
1.0
7] NP =816
0.75
® - Time = 0.10
§ —
& 0.5 lter = 678
o -
0.25 -]L "
T T T T T T T T T ) A S e e | Baseline
0.0 0.25 0.5 0.75 1.0

X-Coordinates

Figure 8.4 Baseline Shock Tube Results - Extra Particles

8-16




For the remaining methods, a brief discussion is given on the individual results
(which may be found in Appendix D) and then a comparison of all the methods is

given in the next section.

8.4.2 Method 2. For the Shock Tube Test, the results at 1 microsecond for
Method 2 are shown in Appendix D in Figures D.5 - D.10.

The 600 particle case, shown in Figures D.5 and D.6, matches the true solution
relatively well and is similar to the Baseline case. There is a small energy spike, some
noise in velocity near the rarefaction wave, and the shortfall in all the variables is
still present. However, the biggest problem is that the location of the front of the
shock wave is missed. The 816 particle case, shown in Figures D.7 and D.8 is a
nice improvement for this method. This seems to indicate that this new method is
converging. The results for this case match the true solution quite nicely except for
being slightly short in energy. The front of the shock is still a little off, but it is

improving.

The results of a variable h case (shown in Figures D.9 and D.10) are included
to demonstrate the effectiveness of variable A and demonstrate that it can be used
to control most of the fluctuations and the shortfall in the SPH Lax-Wendroff and
other forms. The results are not quite as good as the 816 particle case, but better

than the 600 particle case.

8.4.8 Methods 4, 6, and 8. For the Shock Tube Test, the results at 1

microsecond for these methods are shown in Appendix D in Figures D.11 - D.22.

The 600 particle case for Method 4, shown in Figures D.11 and D.12, is quite
similar to the Baseline case. There is some additional noise (Gibbs phenomena and
a larger energy spike), but the biggest difference is the front edge of the shock is
lagging. This could imply a lack of conservation and is further addressed in Method

20. The results shown in Figures D.13 and D.14 are for a special form of the 600
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particle case. As this is analogous to a Lax-Friedrichs form alone, more smoothing
is expected (and seen). This extra smoothing causes the shortfalls to be even more
exaggerated than in the hybrid case. The 816 particie case for Method 4, shown in
Figures D.15 and D.186, is quite an improvement over the previous two results. It has
the advantage over the Baseline of not having an energy spike (and corresponding
pressure spike), but it misses the velocity by more than the Baseline and still misses

the front edge of the shock.

The 600 particle case for Method 6, shown in Figures D.17 and D.18, is ex-
tremely similar to the Method 4 case. This tends to imply the extra cost of perform-
ing the near central time (Method 6) over the approximate central time (Method 4)

is probably not cost effective.

The 600 particle case for Method 8, shown in Figures D.19 and D.20, is also
similar to the Baseline and Method 4 cases. There is a little more noise in velocity
and a slightly smaller energy spike over Method 4. This method also misses the
front edge of the shock, but by a smaller amount than Method 4. The 816 particle
case for Method 8, shown in Figures D.21 and D.22, is also similar to the Baseline
and Method 4 cases. The same differences noted for the 600 particle case are still
present, only smaller. Overall Method 8 (true central time) is better than Methods
4 or 6 (pseudo central time schemes). So, for small problems the added memory
requirements could be easily handled for the better results. For larger problems the

trade-off of memory versus accuracy needs to be considered on a case by case basis.

8.4.4 Method 12.  For the Shock Tube Test, the results at 1 microsecond
for Method 12 are shown in Appendix D in Figures D.23 - D.26.

The 600 particle case, shown in Figures .23 and D.24, is one of the better
of the hybrid schemes. The front edge of the shock is matched correctly and only
minor noise is noticed within the results. The shortfall due to not enough particles

is still present, but that is a problem with all the 600 particle examples (with fixed
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h). The 816 particle case for Method 12, shown in Figures D.25 and D.26, is only
a slight improvement over the 600 particle case. Although much of the shortfall is
eliminated, the improvements seen in this method are not as good as those seen in

other methods.

8.4.5 Method 20. For the Shock Tube Test, the results at 1 microsecond
for Method 20 is shown in Appendix D in Figures D.27 - D.30.

The 600 particle case, shown in Figures D.27 and D.28, is actually a special
case of Method 4 where the smoothing varies from equation to equation. This has
allowed the front edge of the shock to be matched quite nicely. However, the price
paid is in additional noise. The 816 particle case for Method 20, shown in Figures
D.29 and D.30, shows that this special case of Method 4 converges quite nicely.
Although some noise (especially Gibbs type phenomena) is still present, the results

are quite acceptable.

8.5 Method Comparisons

The error norms for the tests in the previous section are found in Tables D.1
- D.7 in Appendix D. As discussed earlier, only the data for the /; and I, norms for
the 1000 point analysis is summarized here. The formulas for the norms were given
in equations (8.10) and (8.11). The summarized results are given in Figures 8.5 and
8.6. On each chart the /; norm appears in the bars on the left and /; norm in the
bars on the right. The small boxes at the end of the line segment in each plot are

the results for the Baseline.

The 600 particle case is probably close to standard since the particle spacing
is the very popular 2/3 h. Comparative results for all the methods can be seen in
Figure 8.5. Note that the hybrid schemes perform approximately the same as the

Baseline for density, pressure, and energy. Methods 2, 4, 6, and 8 do not perform as
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Figure 8.5 Shock Tube Results - 600 particles

well on modeling the front edge of the shock causing the velocity for those methods

to be somewhat poorer than the Baseline.

For the 816 particle case comparative results are shown in Figure 8.6. All
the methods improve over the 600 particle case, showing their overall tendency to
converge as Az — 0. However, the improvement is somewhat better in the Baseline
than for the hybrid methods. This probably indicates the limiter function or the

actual way in which the methods are combined may need to be studied further.

8.6 Summary

In this chapter the concept of flux-limited hybrid methods was introduced,
developed for SPH, and tested on a set of SPH schemes. The development is quite
promising since the concept is well rooted in the finite difference community and the

implementation is relatively straightforward in SPH (even in higher dimensions). The
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tests performed in this chapter verify a hypothesis that flux-limited SPH performs
roughly the same as current SPH techniques under basic assumptions. Some of the

methods performed better for some of the field variables, while others were poorer.

At this stage in the development, it is difficult to determine if there is a signifi-
cant advantage to using flux-limited SPH. It has allowed for SPH to use the continuity
equation for the first time when performing the Riemann shock tube problem. This
is a significant feat, and by itself asserts that the development of this concept should
continue. Additional work in obviously needed to take this concept and apply it in

production type codes. However, that will not be done in this dissertation.
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IX. SUMMARY/CONTRIBUTIONS

Throughout this dissertation results were summarized and coinmented on as
appropriate. The purpose of this chapter is to summarize the work as a whole and
to point out the important contributions to the research community. Also, areas of

future research are addressed.

The work is broken into two major categories: the numerical properties of SPH
and the implementation of SPH. For the most part, material from Chapters 11I-V
(and Appendices A and B) address the numerical properties of SPH while material
from Chapters VII and VIII (and Appendix D) address the implementation of SPH.
Chapter VI (and Appendix C) can be placed in either category since the subject of
kernels is relevant to both. There is, of course, some overlap of these two categories
in all chapters, but the categorization mostly holds and makes the summary easier.
Also, since numerical analysis often lies between pure (theoretical) mathematics and
the application (engineering or physics) each group may be identified with a cate-
gory. The numerical properties chapters will be of more interest to the mathematics
community while the remaining chapters will be of more interest to the engineering

community.

Each of the chapters in the dissertation will now be reviewed, grouped accord-

ing to the discussion above.

9.1 Numerical Properties

Summary. Chapter III (and Appendix A) concentrated on consistency. This
chapter has important connections with Chapters V, VI, and VIII. It started with
a detailed derivation of the kernel approximation and the particle approximation.
This allowed for the proof of two consistency lemmas. Then a discussion of how
the process may be applied to differential equations, including Euler’s equations was

performed. Although consistency analysis is traditionally performed under smooth
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data assumptions, an alternative SPH form was investigated and derived after re-
laxing those assumptions. Finally it was shown how the previous material may be
applied in higher dimensions. As an aside, the SPH forms of artificial viscosity and

wall heating were shown to also be consistent.

Chapter IV (and Appendix B) concentrated on stability. This chapter has
important connections with Chapters V, VI, and VII. A detailed linearized stability
analysis was performed corroborating the existence and nature of an instability seen
by other analysts. Four different solutions were proposed to eliminate the problem.
Finally an initial total variation stability analysis was performed, leading to two

monotone SPH schemes.

Chapter V concentrated on convergence. This chapter has important connec-
tions with Chapters III and IV. This chapter reviewed a convergence result from
finite differences and then extended the result to SPH. The primary work was in the

statement and proof of three lemmas derived from the Lax-Wendroff theorem.

Contributions. Some of the material found in Chapter III (Consistency) and
Chapter IV (Stability) has been addressed in the SPH literature, but never with
the rigor given here. There are several individual items of new work in these two
chapters that are important, such as the instability and proposed solutions having
direct relevance to difficulties SPH has in tension. But, the real gain in these two
chapters is a thorough understanding of the process of obtaining consistency and
stability in SPH. However, the most significant contribution to the SPH community
from the numerical properties category comes from Chapter V (Convergence). It is
my understanding that this is the first mathematical proof of convergence of SPH
to be obtained. Previously, results from SPH calculations would be compared to
analytic or experimental solutions to determine if the method was adequate. This
empirical proof of convergence is important and should not be dismissed, but the
mathematical proof of convergence will allow provide for a rigorous foundation and

provide support that the method is a reliable technique.
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9.2 The Kernel

Summary. Chapter VI (and Appendix C) concentrated on the SPH kernel.
This chapter has important connections with Chapters III, IV, VII, and VIII. This
chapter started with a review of the requirements placed on a function to be an SPH
kernel. The chapter then quickly reviewed how to create higher order kernels and
discussed the smoothing length. This included an investigation into the derivation
of a variable h. The primary work in this chapter was the derivation of measures of
merit used to compare kernels. Eighteen kernels (many of which were proposed here
for the first time) were studied using these measures to determine their usefulness
and that of the measure itself. Analytic results were compared with calculations

from a test problem to verify the work.

Contributions. The kernel, with only a few exceptions, is not addressed at
great lengths in the SPH literature. That is, it is simply treated as a given part of
the implementation of SPH. However, since the kernel is such an important aspect
of SPH, it deserves more analysis. Chapter VI (Kernels) provided both qualitative
and quantitative measi.;es of merit and procedures for determining them. These
measures will allow general comparisons of kernels and further development of SPH
based on good kernels, ensuring more accurate results. There are additional items
of interest in this chapter (such as proposing new kernels and evaluating 18 kernels),

but the measures of merit are the key contribution from these sections.

9.3 The Implementation

Summary. Chapter VII concentrated on time schemes to use with SPH. This
chapter has important connections with Chapters IV, VI and VIII. In this chapter
three second order time schemes are proposed: Lax-Wendroff, Central, and Shu to
use with SPH. Only Central Time has been used in SPH before. Two lower order
schemes were developed primarily to use with the hybrid methods in Chapter VIII.




Chapter VIII (and Appendix D) concentrated on hybrid methods for SPH.
This chapter has important connections with Chapters III, VI and VII. This chapter
started with a review of a method derived in Chapter III. Although it was not a
flux-limited hybrid method, it has many of the same properties and fits in well here.
The chapter then discussed and develop the notion of flux-limited hybrid SPH. Six

combinations were proposed and compared against a baseline with favorable results.

Contributions. Although the discussion of time schemes found in Chapter
VII is important to the user community, the major contribution here comes from
the hybrid formulations found in Chapter VIII. Problems at interfaces of dissimilar
materials and at shocks within a material have been a primary concern in SPH (and
other numerical techniques) for many years. The hybrid form of SPH may not solve
all these concerns, but it should be able to solve many. The ease at which hybrid
methods can be incorporated into computer programs, even in three dimensions,

should make this a popular notion in the near future.

9.4 Future Direction

It is, of course, impossible to predict the future direction in the development
of SPH. But, based on the work in this dissertation there are some quite reasonable
paths. Also, some of the work here was limited based on several factors that could
now be further investigated. Hence, a list is provided that centers on future work in

six areas that follow directly from the work in this dissertation.

e Reduce the impact of the Az = m/p assumption. This assumption was key in
developing the consistency of SPH. It also was used several of places. There
are two paths for this. First, show in a mathematical way that the two vol-
ume elements are close and bounded. Second, find more efficient methods to

implement the equivalence.

e Continue the development of total variation stable SPH schemes. Especially,

consider developing a TVD SPH scheme (if possible).
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Extend the kernel measures of merit to higher dimensions and other shapes
of kernels. For example, one shape that might have promise is a kernel with
two relative maxima known as double hump kernels. These measures of merit
should be useful in one dimension. but would be invaluable in higher dimen-
sions.

Continue the development of flux-limited hybrid SPH. Especially, in the areas

of the limiter function, higher dimensions, variable h, and efficiency.

Further investigations into the effects of a variable smoothing length (variable

h). This includes the effects on consistency, stability, and convergence.

Further investigations into difficulties in SPH involving problems in tension.
Some effects on consistency, stability, and accuracy were addressed individually
in this dissertation. However, a unifying analysis of this problem together with

possible fracture models would be useful.

[n conclusion, I feel this dissertation has added significantly to the mathemat-

ical foundation of the SPH technique while at the same time providing insights into

the computational aspects of the method through the SPH kernel and proposing a

new method for SPH to handle one if the primary difficulties in applications (shocks).




Appendizx A. ADDITIONAL CONSISTENCY NOTES

This appendix includes work related to the Consistency Chapter (Chapter I1I).

but the details were left out earlier.

A.1  Non-Smooth Functions

The lemmas given earlier in Chapter III only applied when the functions were
sufficiently smooth. Also introduced in that chapter was the notion of deriving an
algorithin that is consistent even when the functions are not smooth. However. the
details were omitted from that derivation to this point. So the derivation of how to

obtain an SPH approximation for u'(z;) is now shown.

First, examine the kernel approximation for any function f(r). Consider the
interval shown in Figure A.1. Let a < z, — kh and b > z, + kh. Assume there exists

an integrable discontinuity in the function, f(z), at d. For now assume z, < d < b.

b d b
/af(:z:)W(xo—x)dx = /af(:c)W(zo—J;)d:c +/df(x)W(xo—z)dz

Expand f(z) in the first integral on the right-hand-side above about z, and about

z; in the last integral, where d < z; < &:

/ab f(z) W(z,—-z)dz
= [ Weo=2)[f(z) + (2 = 2)f(m) + 3z~ 2P ()] da
+ [ Wao=2)f(en) + (2 = 2 () + 5(e ~ 1) (6] do

a z, d b

Figure A.1 Non-Smooth Data Consistency part 1
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b

= @) [Wao-)dz + f(2) [ Wiz, 2)de
b

+f'(1:,,)/ad(z —z,)W(z, — z)dz + f'(:cl)/(; (z — ) )W(z, — z)dr
d
+%/ (z = 2.)? f"(.) W (2o — 1) dx
b
43 [ =2l (@) Wizo~ ) do
b b
= fl@) [ Wiz, —2)de +(f(e1) - fla)] [ Wz, — ) da
+f(z.) /ab(x — ) W(zo — z) dz
b
+ [[le = 2)f (@) = (2 = 20) f(2)]| W(z, — 2) d
d
45 [[@ = 2R f €I W(ao~ 2) da
b
+%/d (z - xl)zf"(&) W(z, —z)dz .

Now assume the kernel W, is even, is normalized, and has compact support. The

previous equation then simplifies to

b b
[ @)Wz —a)ds = f(zo) +[fla1) = f(@)] || W(zo — 2)da
b
+ [l =20 f(@1) - (@ = 2)f (@) W(z, - 2)da
1 rd
+5 [ (@ =22 (&) W(z, - 2)de
1 rb 2 gn
+3 [ (@ =20 (&) Wz, - 2)da . (A1)
Note: by the compact support of W, |z — z;| < xh and |z — z,| < xh in the
domains for the integrals above. Therefore the last three lines in equation (A.1) can
be bounded by terms of order k, A%, and h? respectively as long as f' and f” can

be bounded in the following sense: f, f’, and f” must all exist and be bounded on
[a,d) U (d,b], limg—qs |f| £ M, and limg_.41 | f| < M. Previously in Chapter III,
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for smooth data

[ 1@ Weo—z)de = flzn) + O,

but now the equation is

[ $@W (e~ 2)de = flz.) + [f(@) ~ fza)) [ Wies—2)de +O(h) . (A2)

Note that the second integral is only over part of the interval and therefore is not

equal to one. This implies for non-smooth data when z, — d
b
/ f(2)W(z, — ) dz = f(z,) ash—0.

Consequently, in the context of this presentation, using the normal SPH approxima-
tion to model a shock is inconsistent. However, if the second term in the right-hand-
side of equation (A.2) (~ Af) is retained, then the method would be consistent and
of order O(h). That is what is done here.

Now consider f(z) = u’(z), where u’, u”, u” exist and are bounded on [a,d) U

(d,b]. Then
b b
/a u'(2)W(z, — z)dz = u'(z,) + [u'(z1) - u'(.ro)]/d W(z, — z)dz + O(h). (A.3)

Use the details above along with integration-by-parts to obtain a new form for u'(z,).

So integrating by parts yields

b d b
/a u(z)W(z, —z)dz = /; u'(z)W(z,—z)dz + /d u'(z)W(z, — z) dz
w@) W(z, - 2)ly + w(z)W(z,— )l

- /b u(z) -(,;a;W(:c,, —z)dz .
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Use the compact support of the kernel and change the derivative on the kernel from

r to r, to obtain

/b u'(2)W(z, — z)dr = [u(d™) — u(d¥)|W(z, — d) + /b u(z)W'(z, — z)dz .
(A.4)
Put equations (A.3) and (A.4) together to obtain

w(z,) + [u(21) = w'(2,)] /:W(ro—x)dxw(h) = [u(d”) - u(d*)|W(z, - d)

+/b w(z)W'(z, - z)dz .

Since r, was chosen arbitrarily in [d, b] now let z; = d and then note

I

LbW(xo—z)dx - /:W(zo—a:)d:c

1 1 d
= 5 - 3[2LOW($O—I)d$];.

-

/: W(z, — z) dz

Define 6 = 2f:o W (z, — z) dz to now obtain

W(z.) + [w'(d) — u'(z.)] [g-g] + O(h) = [u(d”) - u(d*)]| W(z, — d)

b
+/ u(z) W'(z, — z) dz;.
a
Combine terms and rearrange to obtain

w(zo) = (1‘%) {/.,bu(r)W’(wo—x)dz + [u(d”) — u(d*)] W(z, - d)

-%(1—0)1/(.1)} + O(h);. (A.5)

To derive a more usable form, obtain expressions for u'(d) and u(d~). To find the
expression for u'(d), follow the same procedures that were used up to this point

(abbreviating the steps):
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b d b
/,, flz)W(d-z)dz = / fz)W(d - z)dz + /d flz)W(d = z) dz
d
= () +[f(z) = f(@) [ W(d~z)dz + O(h).
However,
1 d
52/,; W(d-z)dz.
Therefore,

£(d) + f(z0)

b
/af(x)W(d—x)d:c - -

(A.6)

Now let f(z) = v'(z) and note

/ab W(z) W(d-z)ds = /adu'(x)W(d—z)dx + /dbu'(:c) W(d —z) d>
= w@)Wd-2)| + uz)W(d-2) + /:u(:c) W'(d - z) de
= uw(d)W(d—d") — u(d)W(d-d*) + /bu(:c)W'(d~:z:) dz

= [u(d”) - u(d*)|W(0) + /:u(z) W'(d—z)dz .

Therefore,

' ’ b
“(d—)g"—(zﬁ = [u(d”) - u(d")]W(0) + / wW()W(d-z)dz. (A7)
Solve equation (A.7) for u'(d) and substitute into equation (A.5):

vz) = (735) {[.b"<z)W'<zo—z>dz + [u(d) - u(d")] W(z, - d)

_%(1 — ) [_ () + 2 [u(d™) — u(d*)) W(0)

+2 /  w(z) W(d - ) dx]} + O(h) .
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Combine u’'(z,) terms to obtain

1 { b
u'(z,) = 7 {/ﬂ u(z) Wz, — z) dz + [u(d™) — u(dt)| W(z, — d)

—(1 = O)[u(d™) — u(dH)]W(0) — (1 - 8) /b u(z) W'(d - 1) d:r} +O(h) .

a

W(z,) = /bu(.r) [%W’(zo —z) - (1—;-‘3) W'(d - z)] dz

+$[u(d‘) — u(d*)|[W(z, ~ d) — (1 — O)W(0)] + O(h) (A.8)

Now obtain an expression for u(d~) using a Taylor series expansion
u(d™) = u(z,) + (d” —z)u'(zo) + ... = u(z,) + (d—2z,)u'(z,) .

Substitute this into equation (A.8) and solve for u'(z,) to obtain

. 9 SN T
wlzo) = [0-(d—zo)[W(xa——d)—(1-—0)W(0)]] {/ u(=) [EW(“ z)

- (l%o-) W'(d — x)J &z + 3lu(es) ~ u(d)|[W(z, - d)

—(1-8)W(0)] + O(h}} . (A.9)

It is advantageous in the implementation to replace W/(d — z) in equation (A.9) as

follows

Wd-z) = Wi(z,—z) + (d=z,)W"'(z,—z) + ....
Substituting this into ¢quation (A.9) yields

' 1 b .
Wiz = |G Wie —d == 0)W(O)]] {/ u(e) IW'(z, - )
— (1 =0)(d -z, )W"(z, — z)]dz + [u(z,) — u(d")][W(z, — d)

— (1 -0)W(0)]} + O(h). (A.10)
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This is now a kernel approximation form that involves only u(z,), v{d*), and the
associated kernel and integral values for these. To obtain a particle approximation
let

B, = (d—2)[W(zo— d) (1 - O)W(0)],

placing this in the final SPH form (replacing integrals with sums) and writing it for

some particle 1

’ 0,‘ Y m; Y] 1—0,' 7"
‘e = (725) {27“" Wi (45) - =]

j=1 P

—?— [M}} + O(h) . (A.11)

+ d—l"'

i
i

Rewrite equation (A.11) as the sum of the consistent form for smooth data plus a

correction term by

N . 1 N : "
W(@) = 2 %ujm”' + (9. - B.> {Z “u, [BWy - (1 - 8)(d - z)Wj]

i=1 pJ

+ B; [M]} . (A.12)

Taking the usual format for the kernel: W(z, k) = ; K(Z), the following expression
for 8 may be found

0
6=2 /ﬂ;—f K(v)dv;. (A.13)
Note that 0 < 8 <1 and 6 should be investigated at the ends using (A.11) or (A.12)

to ensure they are well defined.

(i) As |z; — d| increases, ie. z; moves away from the shock, 6 increases until
|z; — d| = kh where 0 equals 1. At that point 8 stays at 1 no matter how far z; gets

from d. Using the form from equation (A.11),as § — 1

e — 520 (c2g)w; + (rZ5) [4=2)
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But B also goes to 0 in this case by the compact support of W. Therefore when
|z; — d| = kh, the correction term drops completely out and becomes the smooth
data result
’ m; 1
(i) As z; — d, ie. z; moves towards the shock, 6 decreases to 0. 6 never
actually reaches 0 since z; cannot equal d under the assumptions, but it can get very
close. Therefore, consider some of the terms as § — 0. Using the form in equation

(A.11) let d = z; + €h, h > ¢ > 0 and substituting to obtain

N m. _
u'(I,') = (6——0_3) {Z --—J-’u]' [W’(.’E,‘ - .tj) - (%) (:v; + é‘h - 17.') W”(J:,' - :BJ')

=1 Pi
B |u(zi) — u(z; +€h)
+ 0 [ z;+¢eh—z; (A.14)

B = (zi+ech—z)[W(z: — 2 — eh) — (1 — 9)W(0)]
= ch[W(—~ch)— (1 — O)W(0)] .

Substitute B into equation (A.14) to obtain

u'(z;) = ! ] f: ﬂu- [W-'~ - (1—12) ShW"]
VT T E W —a—ow ol (& Y 0 “

1
+ lu(z) = u(ai + )W (—eh) - (1 - Wl } ;.
Expand the kernel in a Taylor series
W(—eh) = W(0) — <hW'(0) + %ew WO + ... .

Substitute to find
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N

. ! m, INZAS
o) = e W'(O)IHZ:»,“’[ -a-0 () w

7)

+ [u(x) — u(z; + €h)][W(0) - -—W'(O)]} + O(<?).

Use equation (A.13) and d = z; + ¢h to obtain

0

9 = 2/ K(v)dv = 2/0‘1((1;)(10. (A.15)

-

Then § — 0ase — 0, 3 — 2 as e — 0. It is necessary to know if £ bounded as

e — 0. Use L Hopital’s Rule to find % — 4 and by the Fundamental Theorem of
de
Calculus from equation (A.15), %:— = 2K(e). Therefore

eh h 1
0 2K(¢) 2W(e)

Then add the requirement that K(u) -~ 0 as u — 0, ie. K(u) includes the constant

term. So in conclusion, § — 2w#(o) as ¢ — 0. Hence

N W Aug[2W?(0) — W'(0)]
' m] 1 1] U4
w(z:) Z—; o [W'J 2W(0) W (C (4.16)
asz; =+ d where Aug = u(d*) — u(d™) .

So this form is well defined at the limits of 6.

Now consider the shock on the other side of z, as shown in Figure A.2. Next
find an expression for u’(z,) again. This follows exactly as in the first case as
contained in equations (A.1) - (A.16) and the surrounding work. Therefore, in the

work below many of the intermediate steps are dropped.
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a d Z,

Figure A.2 Non-Smooth Data Consistency part 2
For this case equation (A.3) becomes

/b u(z)W(z,—x)dz = u'(z,) + [u'(z1) — v'(z,)] /d W(z,—z)dz + O(h).

Equation (A.4) remains the same yielding

W(zo) + ['m:) ~ w(zo)] [ Wiao~2)de 4 O(h) = [u(d”) — w(d*)IW (20— d)
+ /  u(2)W(z, ~ )ds;.

Now let z; = d and then note

d Zo To
/ W(z, —z)ds = / W(z, - z)dz — /4 W(z, - ) dz
1 1[, e 1
= - - —_ < - .
2+2[2/%W(z0 x)dz] < 3(1+0);,

where 6 defined as before. Equation (A.5) becomes

u'(z,) = (1—3—0) {/: u(z) W'(z, — 2)dz + [u(d”) — u(dh)]W(z, — d)

- %(1+0)u’(d)} + O(h) .

Once again an expression for u’(d) is needed. Obtaining it as before, equation (A.7)

becomes

CDAVE) . fua) - u(@) W(0) + [ u(e)W(d-z)de
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Solve for u'(d) and substitute to obtain

u'(z,)

2

= C——){fuwﬂwuf-udz+[«fﬁ—uwuud%—d)

1-96
1

-+ o)[ — u'(2,) + 2[u(d") — u(d*)]W(0)

b
+2/ u(z)W’(d—z)dz]} + O(h).

Combine u'(z,) terms and equation (A.8) becomes

1+6

u'(z,) = /ab u(z) [‘%W'(Io -z) + (T) W'(d - z)] dz

—%IU(d‘) — u(d")][W(z, — d) - (1 + 8)W(0)] + O(h).

For u(d*) use

u(dt)

Also let

= u(z,) + (d¥ —z,)u'(z,) + ... = u(z,) + (d—z,)u'(z,) .

B, = (d-z,)[W(z,—d) — (1+0)W(0)].

Substitute to obtain

u'(z,) =

u'(z,) =

(25) (s [ i+ (129) wia— o]

—%P%E§%+om}

(0__9_5) { i " u(z) [W’(zo _o)+ (1—;3) (d - z,)W"(z, - a:)] dz

B [u(d") - u(z.)
'3%7:;—H+0W
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Placing this in the final SPH form (replacing integrals with sums) and writing it for

some particle :

- — ) } + O(h) . (A.17)

As before, rewrite equation (A.17) as the sum of the consistent form for smooth data

plus a correction term as

’ al m; ’ 1 ad m; ' "
() = Y =W+ (0_ B-) Y Ly [BiW — (1 4 6:)(d — z)W;
=1 Pj s — D i=1 Pj

fu(d™) —u(zi)
- B; [_____d — ]} . (A.18)

Recall, 8 = 2 f:‘ W (z; — z)dz which in the first case, 8 € [0, 1] but in the second case
8 € [—1,0]. Instead if 8 is redefined as

Iz —dj

6 =2 - 2/0_"‘_ K(v)dv . (A.19)

/: W(z; — z)dz

[}

then there are no changes necessary for equations (A.1) - (A.12) from earlier, but in
the second case 6 needs to replaced with ~8 everywhere. So the last two equations,

(A.17) and (A.18) become

N m: — 9,
o - () [ 3 () -]
+ :; ["_(i"d)_:‘:il]} _ (A.20)
N om; 1 N om;
u'(z;) = Z_: —p-j’-“jW.-'j + (0'_ n B,') {Z_: p—;uj[-B-' Wi - (1 -6:)W}]
4+ B, [i@%:_:(i)_]} (A.21)




To generalize the results, combine the results of equations (A.12) and (A.21)
as follows: Given r;, let d be the location of a discontinuity and r; be the nearest
particle on the opposite side of the discontinuity from r;. Provided r, is quite close

to d the results are

I2,=d)
9 = 2/ " K(v)dv (A.22)
0
B = [Wiy~(1-0)W,](x4)sgn(zid) (A.23)
N N
ey = ST !._.___1) ™ (BW. — (1 — )z W
u'iz;) = ;pj u, W (9+B {,; " u;[BW); — (1 — 0)z4 W]
_B (““"‘*)} . (A.24)
T; — X4

A.2  Artificial Viscosity/Wall Heating

In Chapter III (Consistency), three forms of artificial viscosity and one form
of wall heating found in the published literature for SPH are introduced. At that
time, these terms were stated as being consistent without showing the details. Those

details are shown here.

Start with artificial viscosity. The three forms are attributed to: Monaghan,

et al. (37), Hernquist and Katz (19), and Lattanzio, et al. (28).

1. Monaghan. It will be shown for the momentum equation (when g—;— < 0),

this form of the artificial viscosity corresponds to

ah 8 { v\ 3h* D )’
— e = —_—— — — 9
2p 0z (C”az) 2p Or [p (39;) } ' (4.25)

For the SPH form, in the momentum and energy equations replace the f,— term with

% + %II where the function II;; = [I{z,. z,) is defined by

—00.5(6,' + Cj)[.l,‘j + .3#‘2]

05 (s + p)) (A.26)

Hg'j
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h(vi —v;) - (zi — 1)
: — g — <90
by = (z, — 2,2 + nh? (vi—v)) (2 — 1)) (A.27)
0 otherwise .

The I1 term has a linear term that is referred to as 7, and a quadratic term that is

called m,. First consider the linear term.

. = —a0.5(ci +¢)u;  _ (—ah)(q+c’i)(vi—t’])(( T -1, )

0.5(p: + p;) pi + p; r; — z;)* + nh?
cte _ atla—zyet+) | 2ei-zicit+ oz (C"),+O(h2)
pi + p; pi+(pi —xijpi+--2)  2pi—ziipi -0 pi 2 \p

T z?
bV —v; = Y — (U .l‘,J'U + —= —Z :’—{- ) = :r‘-jvf -2 ”+ O(h )

2 ’2
e (G e = ()= () e () ] 3000
So for the term that contains 7,
N ¢ 72
;mimw‘!j = —ah { I: ! Zl m; (I'J +Tlh2) W’]

Ci I ! G " 1 al z?J 3
— [((p—,) v‘-+<;) v,-)EJZ:;m (x—u-l-nhz)w ]}+O(h )

Examine the summation terms:

2 N N
r YA 2y m; o
Zm: (IZM,,Z)W = L mW;+0(h) = 3 Zp W+ Ok

=1 i=1 » =1 Pi
= pﬁ+0(h2)
73
WI = ; (d 2
ZmJ( +77h2) J_X;m,:::,W + O(h*)
= x.Zm, Zm,x,W' + O(h?)
1=1
N . N o ,
= w) oW = 2 —aip Wi + O(RY)
= Pj = P;
= zip; = (zp); + O(h?) = —pi+O(R?)




Therefore,

N , / ’ )
S mrby = —ab{ S+ (%) e (2) |5} + o)
=1 Pi pi pi -
culpl dvl  cvipl vl
= —ah LRl [ (1) 3 10 3
a ( . + 5 0 5 + O(h”)
1 ! "
= —ah(c'v‘p‘+c"“‘+c'v‘> + O(®)
2[),‘ 2
h ‘p! h
= W ) + o) = - (ealn) + O
2 pi 2 p
, ah 3 v
Thus JijwaWU = —55; (cpa) + O(h?)

Next consider the quadratic term.

Bufj 2(v.-,- ‘I"j)z

T, = ——— = ﬂh2
0.5(pi + pj) ( )(P.' + p;)((zi — ;)% + nh?)?
2 2 2 1 i
= ; = , = —+‘T”p'+0(h)
pi + pj pi + (pi —zijpi + ) 20 —xiip; + - pi ._p'
r? 2
v,-j = v; - vJ- = v; — (v,~ -— 2:;_,1): + 2‘] " + ) = 1,',‘]‘1): bl %v,’-’ + O(h2)
2
_ 2 t 2
vijTi; = Ty Vi — 2’ vl + O(h*)
(vijzi;)° =zt (v)? — 2 vjv] + O(h?)
Lo 4 2 / n2 2o
Hence 1(vU ‘tlJ) = z:J (v:) + 't?j (P, (v;) _ vt v: ) + 0(h4)
3(pi +pj) pi 2} pi

So for the term that contains 7,

r 2 (')2 i I:}j 1
Zm’m’w = o {[ pi Zm’((i?ﬁn'z’)’) W‘j}

1 ]"l

A AR z} ) 4
*{( o) B () Wv]}*o‘” :
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As before, the first sum is approximately p! and the second sum is approximately

—p;. Therefore,

III

Al ’ ;)P f(vl)? i t
Som,m W, = Bk’ (;” "‘(2‘-))2” + p_"] + O(h)

vl)2 ' n

pi(vi)* 4
2%; +vivi} + O(h%)

pi(o])? +20000%] + O(hY)

Al Br? o | (8v)?
SmymW, = = (= 4
Thus 2 m; m, W, 3, 92 [p (ax) ] + O(h?)

Finally this results in

N
=Y mI; W, = -—Zmﬂra Zmﬂrb
1=1

j=1
ah 0 v Bh* 3 v
= ——— _ | - h3
2p 0z (C”am) 2p Oz [ (6:0) ] O

2. Hernquist and Katz. This form does not require any derivation or consis-

tency analysis since it is given below (and in the literature) in differential form

2 2
() az

For the SPH form, in the momentum and energy equations replace the ;’-;— term with

pﬂ,« + 311 where the function II;; = II(:, z;) is defined by

dv
oz

ahc
p

% 49
m, = L4+4 A.29
’ p? Pl (A2
ah'. ; ‘V"U{'*' h? i v 2 Vi — V) Ty — Ty <0
B T L T (e T
0 otherwise
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1
note : (V.v); = o Y omy(vi—v) W),
v
3. Lattanzio. It will be shown for the momentum, this form of the artificial

viscosity corresponds to

ah & [ _dv\ Ph? 8 w\? )
w2 (v2)-222 ()] ()

This form is very similar to the Monaghan version (P instead of pc and a factor of
%). Therefore, the derivation should follow exactly as in the Monaghan case, and
is not done here, other than to give the SPH form: In the momentum and energy
equations replace the f;— term with ;’;—(1 + II) where the function II;; = l(z;, z;) is

defined by

I; = —op;+Bu; (A.32)

h(vi — v;) - (z: = z;) v (2 — 2
PR i (e E ) o u) (B o) <0 )

0 otherwise .

4. Wall Heating. There is currently only one form in use, attributed to Mon-
aghan (41). Although it is given in differential form in the literature, the consistency

for this one form will be shown here. The energy equation is modified as

De Pov 1
7 = _;5; + ;V -(@QVe). (A.34)

To implement this in the SPH energy equation, add an additional term, H, where

(G4 g5) (e — ej)(mi — 7))
H, = - M I W A.35
j‘gm]Oﬁ(Pi+Pj)(($i—$j)2+'7h2) ! (A-35)
g = ahyc, |V vy + BRI (V-v)? (A.36)
1 ’
(V.v), = —;—ij(vs*vj)W,j-
g
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The following procedure follows that for the Monaghan artificial viscosity quite

closely.
1 2 2 1 xip; 2
= = - = — + ! + O h
0.5(p; + p;) pi+(pi —zipi+-+2)  2pi—ziipi 4 20} (#)
2? T2
€ —¢ = € — (6,’ - :E,'j(" + Je:' + . ) = l'gje: - 2” ” + O(hz)

; e ’ ] " 2
€i — €& 1 zyp; . ] //) € (e.'P.' ei) Zi; 2
oo = o) (e - ) = oy - (202 25 o)
0.3(pi + p;) (Pi 2p? ) \ ! 2 pi T\t pi) 2

So the H; term is now

e N 1'21
H = -2 (g +q:) | —— ) W
p,'jz_;mj (q +qJ) (1‘2~+ hg) 1)
e p' eu 273 , )
2 2 —2/, Zma(%-{-%) ﬂ Wi + O(h%)
z}; =}
%t+e = a+(g-ziq+Jd+ ) = 2 - 2:Jq,+—2—’qf’+0(h2)
So the H; term now becomes
0 - _2qi¢€] N o z% W
' i S ! I?j""?hz N
~gie; | 2gielp} 2q;¢f z; ) 2
— t 73 1 1 — W O h
(P4 2 - 5] S () s + o0

The summation terms were shown under the Monaghan artificial viscosity to ap-

proximate p; and —p; respectively. Substitute to obtain

2 .6 449i € pi fe: ;eﬁ : ,~e'-’
H - 29 _(_q LT ')(—pi)+0(h2)
pi Py P; pi

1 [ "
= —;[ (2¢ipi + 4l pi — qi ;) + € (g pi)] + O(R?)

- _;[eﬁ(qu)’ﬂi'(qapf)] + O(h?)

- —%kﬂmmn'+ O(h?)
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Thus H =

1d

pox

[(qp)

de

oz

] + O(h?)

If @ equals —gp the differential form is recovered plus terms of order h?. Also note

that ¢ has terms of order & and A? in it, so the Q term goes to zero as h goes to

zero. Thus, this wall heating term is consistent.
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Appendiz B. ADDITIONAL STABILITY NOTES

This appendix includes work related to the Stability Chapter (Chapter IV),

but the details were left out earlier.

B.1 Stability for Several Equations

In the Chapter IV, one SPH form (probably the most popular) was shown to
have an unconditional instability. Further, this form can be simplified to appear
like those used by other analysts in performing stability analysis. In this section,
it is shown that the previous analysis applies to many different forms of the SPH

equations, not just the popular one. The forms considered are shown in equations

(B.1) - (B.13) for particle s

N
ps = 3 mj(v,—v;) W, (B.1)
=1
. N om;
ps = ps Zl p_;(vs - ;) W, (B.2)
=
. N P; Pa ’
o= - Lm (? + ;-,;) W, (B.3)
I= s
N P;P,
v, = -2 Z m; p W, (B.4)
j= *
N
i=1 PiPs
. Al P+ P\ .
v, = — 2:1 m; oip Wy; (B.6)
Jj= s

€, =

(
6 = f:mj(”’,) (v, = ;) W, (B.3)
(




, 1 Y P, P, ,
& = 3 Z m; (;% + —;) (vs — v;) W, (B.10)

1=1 7 ps

N P;P,
€, = ij ’ (vs = v;) W, (B.11)

j=1 P;iPs
i, = v, (B.12)
- 5> ( i )W (B.13)
T, = vo+ey m;| ——-"— o .

Z ™\ 05+ py))

Equations (B.1), (B.3), (B.10), and (B.12) make up the system previously studied.

The remainder are analyzed below:

1. Equation (B.2)

N
. m
Ps = 2 —3 -—-vj) W,
=P
b,"'q;s = (ps+¢a) Z (va 77j+”s—l’j) W,’J
j=1 Pi +¢J
N
= (Ps+9s) Z = (B, — B+ s - v5) W5 + (xs — x5) W]

2

pi+ &;
m

- 7;) W, +(Va —v;) Wy,

= (ﬁs +¢s

+(,-, )(x, xi) W]

1
™
3

|

|
S

W;-J + —Z_—”’(V, - l/j) W,’}- + %("-_’s - ﬁj) (Xa - XJ)W;;

Pj f] f)

Assume

to obtain

B-2




(]
W

S(Vs —v;)

N
= 0;) (—Ps®; + p;6s) W, + 5.
2

. 1
0. = D m;|=(,
1=1 p]
5, -
+‘f( - 9;) (xs — x;) si| -
3

The system is now linear in the perturbations so that Fourier analysis may be applied

Substitute and then divide both sides of the resulting equations by e'** to obtain
— 5) (55 — eI g W + 2 (1 - =) W,

+p’(z7, —5;) (1 — 'U=*)¥) W,’;] i

= l:“m f: 2(03 — 2,)(p; — :e"*) ‘Vr’] ¢+ [—m f: 5:1(1 — e yw/
I==00 =t P;
(" — i}j) (1 - eilk)vvln} X

Finally, changing notation and simplifying

+|:mz ;—;v

[==00
Compared to Chapter IV, this form of the equation has an additional term (¢ term)
in the amplificatior matr x. However, under the smooth data assumptions, this term

falls out. In fact, under these assumptions, the remaining term is

$= [—m i (l—e"")l’lf,'} v.

l=-00

which is the same as in Chapter IV

2. Equation (B.4)
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This form is not a good choice for HVI problems. The square root term could be
imaginary. If the pressure field is quite smooth, a smooth transition from real to
zero to real again could occur. However, if it is not as smooth, or even worse near
a shock, this term would become imaginary. For these reasons, this form was not

pursued any further.

3. Equation (B.5)

. P
vy = — m: Ws,
J’Zz; ! P;Ps 7
. 1 N m;P,
5s+l./s = - ~ i L Ws,
(ps+¢a) ng pj+¢1 !
1 N m; - ~ -
= - (- A;+B;¢;+Ce — )W
(550) 7 Ao Byt G W = ) W
1 .\ o 1 N\ - ,
= _(-_-—‘b)Zm,(——_—;)[AW’+B¢, L+ Cie; W
ps p.g j=1 p] pj
+A'(Xs )W”
. ¢ -
= _ij( _¢J )[A L4 Bi g, WE + Cie; WS
j=t PiPs psPJ IHE
+ A'(Xs - X;) W'_"}
B 4 i
= S m Ay | (- ) 6wy - S e
_,z—-; ! P;iPs Z ! PjPs P?Pa 7 pjpf
C; A,
+ W’ + (\’—XJ)W-"TIJ:I
Pjps P;Ps
Then assume
N
'l—), = - m, —— Ws-' 3
]Z=:| JPJP: J

to obtain
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A, A5 C;
= - m; S 7 - ¢ p—— ¢swl - &; ,"
Z ! [(pp p;"p,) ’ p,pf pips %
A, ]
Xs = G)Wal .
p-Jp-s(Y YJ) 7

+

The system is now linear in the perturbations so that Fourier analysis may be applied.

Substitute and then divide both sides of the resulting equations by e*** to obtain

N = ~ .
= - m;{[( B - 4; ) e'li—ok _ —Aj ] ¢W’.. + - C' e'li- ’)"eW'
=1 PiPs /3?,53 p;p? i PiPs

A ”
+ —L(1— bk W;!.} :
pjpa( )X 7

Finally, changing notation and simplifying

() e [ S

= =00 PjPs P;Ps PiP; =00 pJPa

- [m > :i?(l—e"*)m"}x-

I=—oo PiPs

Compared to Chapter IV, this form of the equation has the same number of terms
under the smooth data assumptions in the amplification matrix; however, they are

slightly different. Define G4 as
G4 =m Z eilkvv'll.
I=—00

then the eigenvalues obtained when substituting this equation in for the original

forms of the momentum equation are

-~

AC B A
/\=0,0,i\J— (QT + _—2) G1G4+_—3G1G2— -A
p p p

p*Gsy
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This is further simplified with the uniform space assumption to find: A =0,0,+v/~-D
where D = D, + D, and

4m2 L. . . o0 2
D, = (AC + p*B — pA) (}: sin(lk)w,')
=1
2 . >
D, = _ﬁr_zn_ AN (1 - cos(lk)) W)" .
=1

This is almost exactly the same as before, and has the same instabilities.

4. Equation (B.6)

<&

I

|
M=

i=1 P;iPs
N
. P, + P; ]
Vg +V, = — m;
J-z;{ [ PJ +¢J)(Pa +¢a
j=1 PiPs + PJ¢: + Pa¢1 e
N &; é
= - —~ | (A, + A )W5 +(B., + B; ¢
,; ( B pfpj) [( JWai +( IV,
+(Cse +C’J€j) L+ (A + A))(xs — x;) WE)
N i A N s A
s+ A B, A +4A
() (B 52)
=1 sP; i=1 1 Ps P;Ps
_ (_Bj _ Aa~+.2 ]) ¢s W’,_J + C] EJ‘ —C.’ 53 ’[_J
P;Ps PiPy 3 Ps
A+ A
+— J(X:‘XJ') a’_.;]
iPs
Assume N .
r A, +A;
Vg = — m; — W 9
3 J=21 2 ﬁJps 8
to obtain




N N - N . . "

. - B; A, + 4 , B, A, + 4

A L = B e e R
PjPs P;Ps 1 Ps PPy

+CJEJ +_C,5,

W- + At A,
ﬁj Ps 0

83

(o - x,)w;-;] -

The system is now linear in the perturbations so that Fourier analysis may be applied.

Substitute and then divide both sides of the resulting equations by e*** to obtain

N ~' ! A . » A 1
vo= =3 mj{[( 5 _ A’+AJ> e'li-ok 4 ( B, —A’+A’>]¢Wfa

[_’jpa ﬁ?ﬁs ﬁ]ﬁs pJpZ

X N Li(g=9)k A A
pJ ps pJ p.’

Finally, changing notation and simplifying

v = [m > (Bjei"‘+l§,)u/,'.’¢ + ,:m > (éje‘lk+(§,)uf,'}s

{=—00 ! l=~00

<

+ [—m S (A, +A4;)(1-e W x .

l==00

This form of the equation reduces to exactly the same as the original in Chapter IV

under the smooth data assumptions.

5. Equations (B.7), (B.8), (B.9)

These three equations are all very similar and using the letters: a and 3

appropriately (as seen later) to analyze

Py
Pa PB

i = imj(

=1

) (2 = v3) W,

) N P
€, + &, = E m; z Vg — U, +v, — v, W;
for J (papﬁ) ( 7 J) }]
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M=

(Ag + Bada + Cata)

m; — —
’ (Pa + a)a)(pﬁ + éﬁ)

=1
N
: P . 1
S mJ-(Aa+Ba¢a+Cuso,)(‘ __ %
J=1 PaPs PaPj
s = v))Wh + (8 = 9)(xs = x,) W]
Y A B, A, Aa
= Z = = - -2 = ¢Q - = —2 E
=1 papg PaP3  PaPS PaPg
(s ~ )W + (B = 55)(xe = x5) W]

(i

) (05 — ¥;)

2 pﬁ

-

o Aa
4—(~ - ) saW,'-j+(, ~
Pa P Pa PB
Assume
. A ,
€y = m;——(0, — 0;) W
jgl ]papﬂ( J)
to obtain
N - .
A
= — =) (U, — V;)pa W, — —
g [(papa P&pa)( i)W Pab}
A, Ca A,
+— s — V)W, + ——e W+ —(5, - 0
PaPs o PaPp

So under the simplifying assumptions for smooth data and uniform spacing, all the

terms drop out except

~

Zm,

=1

Now note for each of the equations

equation (B.7)

equation (B.8)

) (Z—)_, - 6j)¢ﬁ W,

(ﬁa -

l—)j+V,—VJ)W

— ) [(ﬁ, - 9,)W,

w3 (50

Pa Ps
+ | -
p

a PB

Ax

I/J')W_,,-j .

Pa Pﬁ

a=38,3=3s

a=s,B=j

B-8

_ 5&] [(f's - [‘j)

) (vy — ¥ )¢0 w’s’)
- ) (vy —v;) W5

) (U5 — ;) (xs — X




equation (B.9) a=j,3=7.
The system is now linear in the perturbations so that Fourier analysis may be applied.
Substitute and then divide both sides of the resulting equations by e***, and simplify

the notation to obtain the same result for all three equations

é=|-mA Z '”‘ v.

l=-00

Therefore, these forms of the equations reduce to exactly the same as the original in

Chapter IV under the smooth data assumptions.

6. Equation (B.11)

.

j=1 P;iPs ? !

As with the momentum equation, this form is not a good choice for HVI problems.
The square root term could be imaginary. If the pressure field is quite smooth, a
smooth transition from real to zero to real again could occur. However, if it is not as
smooth, or even worse near a shock, this term would become imaginary. For these

reasons, this form was not pursued any further.

7. Equation (B.13)

Iy, = v,+elz_:lm10—5-%’::’—m o5
. . _ N 3—7 s
o - e ionsaal .
+(X3—Xj) Wl
= v,-i-u,—-QCJZl m; —E;—;—ZJ— 5= ‘(—Z'_"—(¢s+¢1)

B-9




vy — V; Uy — Uy ,
+—W; + - (xs—-x)W,}
Pstpi 7 Pat b e
Assume
N _ _
. B 0y — U; ,
I, = 0, — 2e¢ m; | — — 1 W,
,2=:1 J(Pa+m) o
to obtain
X = 2eZm —-—————(¢ +¢.)W, Yy
2 ’ +p1)2 ’ ! Ps+pj i
Uy, — U ,
—(Xs — X W .
p,+p,( ) ]

The system is now linear in the perturbations so that Fourier analysis may be applied.

Substitute and then divide both sides of the resulting equations by e** to obtain

,Y = v — 2¢ m, "':'—'—" +e' =3 ¢ ——-_——_U 53
i=1 ! (Ps + PJ)2 ) ps + p; ’
U, U; i }—8
Tt Jg(l ’ )k)XW’L’} '

Finally, changing notation and simplifying

‘ 2em S (L+e™*) Wil ¢ + |1-2 il—e

X = em e | em v

l=-0c0 p’ + p]) l"—OO + P]

[2em > — v,— 1~e“")W’]

l——oo

This form of the equation is quite different than the original one found in Chapter IV.

But applying the assumptions under smooth data analysis it reduces to the following

[ Z (1 — e’ W,] (B.14)

L l=-00
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In calculating the eigenvalues using this new form. the same results are obtained as
the original form with one important change. If € in the term above is large enough

it can offset the PW"” instability. The eigenvalues are

A o= 0,0,:}:\/—(A0+B)G1G2—2AG3(1-%Gs), (B.15)

where Gs = m Y (1-e" W, (B.16)

l=—0c

The Cf« term is always positive and under uniform spacing, real. Obviously this
form needs to be investigated further. This is done is the Techniques for Obtaining

Linearized Stability Section of the Stability Chapter (IV).

B.2 Considerations on Two Equations of State

In the Stability Chapter (IV) it was shown that the instability had two parts,
labeled D, and D,. The D, part contained the PW” instability. The D, part
vanishes at minimum wavelengths. It is necessary to know if this term is going to be
a problem for longer wavelengths. So, in this section a look closer at this D, term is

done for two specific equations of state: the Ideal Gas Law and the Mie - Griineisen.

B.2.1 Ideal Gas Law.  The form of the Ideal Gas Law Equation of State
(EQOS) used here is
P = (I'-1)pe, (B.17)

where I' is a material constant. From this form for stability

P(p,e) = P(p+¢d,e+e) = (I =1)(p+4)(E+¢)
= (F=1)pé + (F-1)ép + (I —1)p¢.
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So from our notation in the Stability Chapter (P = A + B¢ + Ce)

A = (T-1)pé
B = (I'-1)e
C = (T-1)5.

Use the value for Dy obtained in equation (4.14) to find

4m2 Y. . . oo ‘ 2
D, = = (AC + p*B - 2pA) (}: sin(lk) W,’)
=1
am? (&0 . ’ ’ - = =2 5 = =5
= = (E sin(lk) W,) (T = 1)p&(T = 1)5 + p*(T — 1)é — 25(T — 1)pe]

_ 4m2€(F—_1)(F“2) (i sin(Ik) M)2 .

2
p =1

Assume that € follows convention and is taken as always positive (otherwise the form
of P must change). All the other terms: m, 5, and the square term are all real and
positive, except possibly the ' terms. T itself is always positive, which implies that
D, is non-negative for I' < 1 or I' > 2; making the D, term a stabilizing term for
most values of I'. However, for values of I' between 1 and 2, the D; term is negative

and, therefore, could add to the instability at higher wavelengths.

B.2.2 Mie - Grinetsen.  The form of the Mie - Griineisen Equation of State
(EOS) used here is

P = Pp,c: (l—g—p) + T'p(e—e,) (B.18)
P = g+ (S, — Dp? + (S, — 1)(3S, — 1)pd if 4 > 0 (Compression) (B.19)
u if 4 < 0 (Tension)
= L1 (B.20)
Po
r = Pr,, (B.21)
p
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where T,, S,, ¢,, and p, are material constants and e, is the initial energy. The

following is needed for the stability analysis

_+ — Po -_o ‘ _
“=£_1=p¢p=pp+g=”+g

Po . Po Po n. Po
P,: = P+ P.

Use this form for stability to obtain

FO (]
P(p,e) = P(p+¢,eé+e) = Pﬁﬂocf(l—?(l*%» + Lopo(e—e,)

2
= {Phpoc" [2—-Fo 1—%)] +Fopo(é—ea)}

2

= A+B¢+C~'E.

The A term can be easily seen as the first term in braces since it just equates to
P(p,€). The rest falls in place because P is just a function of p, not e. This implies
that P, is a function of 5 and P, is a function of ¢. The equation, C = [,p,, is
directly obtained from the above equation. To find an exact value for B a closer
look at P is needed. Both the tension and compression cases are handled as one,

by taking S, = 1 for the tension case.

2p¢
2 -2
= @’ +
# g Po
3, 3E%9

3 3

= @+
g g Po
Poo= [B+ (So- )@ + (So-1)(35, - 1) ]

1
+ ,T[l +2(So=1)a + 3(S, ~1)(38, — 1) &%) ¢
= P+ A
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Now obtain an equation for B

) 2
B = Po)c;zfo [ + (S, — 1) @2 (50"1)(350—1)[43]
&

=2 [2 T, (1 - p—)] [1 + 2(S, — Da + 3(S, — 1)(3S, — 1);12] .
2 p

For the tension case (& < 0 and S, = 1) one can fairly quickly see that B is positive,
but it is not as obvious for the compression case. So each of these cases is investigated

separately.

1. Tension. Use the value for D; obtained in equation (4.14) to obtain

4 2 . . oo ) 2
D, = _;Lj_ AC + p*B — 2pA) (Z sin(lk) W,’)
=1
4m? [ 2r . 22T (5 —p,
- 22 (Sanwnw) [ar.p, - B35 (222)
P =1 2 Po

2 2
= 4,',” (Z sin lk)W,) [fi(rapo -2p) + 2 (25 + I‘o(ﬂz—ﬁz))} :
=1

Assume that € follows convention and is taken as always positive (otherwise the

form of P must change). For some values of p and e. the D; term is negative.

However, considering several different metals (Aluminum, Copper, and Lead) that

have various values for the constants leads to the results that for p down to about
0.50,, D, was positive. Results are shown in table B.1. Of course, for density that
low the material probably changed phase and may need a different EOS or constants.
Hence, for realistic values of p in tension. the D; term should be non-negative, and

therefore does not unstabilize the method.
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[Metal [ T, | p,| <] So | Dy >0 for p 2> |

AL 1.68 | 2.71]0.535 | 1.34 1.25
CU 2,00 | 38.92]0.391 | 1.51 4.50
PB 2.03 | 11.35 | 0.203 | 1.47 6.00

Table B.1 Mie-Gruneisen Tension Results

2. Compression. Once again, use the value for D, obtained in equation (4.14)

to obtain
4m2 . - 95 o~ 0 . , 2
Dl = —'ﬁ?— (AC +p B - 2pA4) Z Slﬂ(”c) Wl
=1
4m? (& o
- “;T > sm(lk)W/> {A(Fopo - 25)
=1
22T, N i )
e 2 [u + (So—1) i + (S, —1)(3S, - 1),ﬂ]
52 2
+p200 [2 -T, (1 - %")] [1 +2(S, — )iz + 3(S, — 1)(3S, — l)ﬂz]} _

Assume that € follows convention and is taken as always positive (otherwise the form
of P must change). For some values or p and e the D, term is negative. However,
once again several different metals (Aluminum, Copper, and Lead) were considered
that had various values for the constants and found that for p up to about 2p,, D,
was positive. Results may be seen in table B.2. Of course, for density that high
the material probably changed phase and may need a different EOS or constants.
Hence, for realistic values of p in compression the D; term should be non-negative,

and therefore does not unstabilize the method.

[Metal [ T, | p,|] ]S, [Di>0forp<]
AL 1.68 1 2.71 [ 0.535 | 1.34 5.00
CU 2.00 | 892 (0.391 | 1.51 15.00
PB 2.03 | 11.35 [ 0.203 | 1.47 16.00

Table B.2 Mie-Gruneisen Compression Results
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C.1

All kernels in this table take the form W(z, k) =

these kernels and their first derivative are shown in Figures C.1-C.10.

Appendiz C. ADDITIONAL KERNEL NOTES

This appendix includes material related to the Kernels Chapter (Chapter VI).

RKernels Analyzed

The kernels shown in Table C.1 are used in the analysis found in Chapter VI.
Graphs of all

LK(F) = $K(5).

" # l Name I Type [ K(u) ] K | 1-D ¢, H
1 | Gaussian B e~ v 3 7‘;
. -3 3uf3 < |ul <
2 | W, B-Spline B { ' u|u$3 alul :f‘l) : IZ" =, |2 2
3 | Cosine B |(1- (1 + cos(Zt)) 2 g(%"i—:”
4 | Exponential H ‘I“l —e” 91 0.500618
5 | K —2 Exponential | H e“‘ Sl _ g=9 21 2.250555
6 |1/X,2 H ,“M + L}G—G 2 | 7.337061
7T [ 1/X, 4 H 4+M + =8 2 | 30.163694
8 |1/X,10 H | ol + 1—}—;;11 2 | 283.125508
9 | —X° 0 2( u| = 2)° 2] 037
10| —z—¢" P — ul - e“"I + e’ 2| 0.355617
114-X° P 4 —u’ 2 0.09375
23— X3 P [8—[uf 2 | 0.041667
13 | k — 2 Gaussian B |e 2% _ -0 2| 0.846657
14 | L Gaussian B |(2- lul)e““2 2| 0.392674
15 | Q Gaussian B |[(1-%)e™ 2| 0.643998
16 | T Gaussian B [e* —e* 2 | 0.591401
17 | Quartic-1 B | (2+3]ul)(2 - |ul)? 2 | 0.0390625
18 | Quartic-2 B |16 — 8Juf® + 3u* 2 | 0.0260417
Table C.1 Kernels Analyzed

C-1




VA D
7 0.1 \\.
’, \‘\\
— 2 L \‘\~_]4_ u
-2 -1 1 2

Figure C.1 Bell Shaped Kernels
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C.2 Kernel Test 1 Plots
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Figure C.11 Gaussian Kernel (1) Test 1, R = Az/h
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Figure C.13 Cosine Kernel (3) Test 1, R = Az/h
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Figure C.15 k-2 Exponential Kernel (5) Test 1, R = Az/h
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Figure C.21 Kernel (11) Test 1, R = Az/h
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Figure C.27 Quartic-1 Kernel (17) Test 1, R = Az/h
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C 3 Higher Order Kernel Results

The kernels shown in Table C.2 are used in the analysis found in Chapter VI.

All kernels in this table take the form W(z, k) = }K(f) = ¢ K(). Graphs of all

these kernels and their first derivative are shown in Figures C.29-C.30.

” Name [ K(u) [ K ] I-D ¢, J
Super-Gaussian (3 —u)e ™ 3 =75
. 17 — My2 4 By 3 if 0<|ul <1 .
Enhanced B-Splines { }I(Q ~Tu)2(49"= 47Ju|) if 1< |u| <2 2 5
Super-Gaussian 2 (1.49624 — u?)e™¥ 3 | 0.566214

Table C.2 One-Dimensional Higher Order kernels
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Test 1 Plots for Higher Order Kernels
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Figure C.33 Super-Gaussian 2 Kernel Test 2, R = Az/h

Tables C.3 and C.4 show the {; and [, results from Test 3 in Chapter VI for

the Higher Order Kernels. This data results from using symmetric kernels on the

three test functions for all 3 kernels.

[ Name | Type | Polynomial | Sine | Step ||
Super-Gaussian B |0.018911 0.024206 | 1.785054
Enhanced B-Spline | B | 0.087208 0.074404 | 1.950188
Super-Gaussian 2 B |0.018911 0.024193 | 1.786731

Table C.3 Avg l; Rel Error Norms for Higher Order Kernel Test 3

[ Name | Type [ Polynomial | Sine | Step |
Super-Gaussian B | 0.042776 0.054131 | 2.939078
Enhanced B-Spline | B | 0.129249 0.111414 | 3.231267
Super-Gaussian 2 B | 0.042970 0.054224 | 2.941180

Table C.4 Avg l; Rel Error Norms for Higher Order Kernel Test 3
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C.4 HRernel Test 3 Results

Tables C.5 and C.6 show the [, and !, results from Test 3 in Chapter VI.

This data results from using symmetric kernels on the three test functions for all 13

kernels.
| # | Name | Type | Polynomial | Sine | Step |
1 | Gaussian B [0.007119 0.078705 | 1.525396
2 | W4 B-Splines B | 0.013728 0.057164 | 1.531404
3 | Cosine B | 0.028616 0.058633 | 1.561539
4 | Exponential H | 0.088975 0.281294 | 1.419907
5 | Kk —2 Exponential | H | 0.507906 0.521096 | 1.015792
6 |1/X,2 H |0.127125 0.175582 | 1.365669
7T 11/X,4 H |0.103917 0.156133 | 1.395861
8 |[1/X, 10 H | 0.089925 0.144996 | 1.414412
9 | -X? H | 0.080997 0.138340 | 1.426459
10} —z—¢€* P | 0.238686 0.213771 | 1.644485
11 14— X? P [0.288949 | 0.255279 | 1.676442
12 18- X° P [0.380648 0.331688 | 1.735950
13 | « — 2 Gaussian B | 0.090605 0.126439 | 1.422764
14 | L Gaussian B | 0.061084 0.108767 | 1.451667
15 | Q Gaussian B |0.012795 0.064329 | 1.524989
16 | T Gaussian B | 0.032013 0.073000 | 1.540140
17 | Quartic-1 B |0.020412 0.068948 | 1.521352
18 | Quartic-2 B | 0.087969 0.117343 | 1.532017

Table C.5 Avg l; Relative Error Norms for Kernel Test 3
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# | Name | Type | Polynomial | Sine | Step |
1 | Gaussian B | 0.007985 0.081705 | 2.310485
2 W, B-Spline b 0.020354 0.064281 | 2.522221
3 | Cosine B | 0.045007 0.065928 | 2.433239
1 | Exponential H |0.132289 0.291637 | 1.699878
5 | k —2 Exponential | H | 0.566931 0.579755 | 1.987313
6 |1/X.2 H | 0.156022 0.201873 | 2.203153
T 1/X04 H |0.130337 0.178867 { 2.216029
3 | 1/X.10 H |0.115533 0.165679 | 2.218148
9 | -X? H |0.106990 0.158004 | 2.215146
10| —r—¢* P 0.292461 0.266744 | 2.123883
11;4- X* p 0.354653 0.313852 } 2.144938
128-X3 P |0.469350 0.402054 | 2.231259
13 | kK — 2 Gaussian B 0.164966 0.193598 | 2.569320
14 | L Gaussian B | 0.084140 0.129441 | 2.420860
15 } Q Gaussian B | 0.019560 0.070414 | 2.466266
16 | T Gaussian B | 0.040621 0.082925 | 2.358863
17 | Quartic-1 B | 0.030735 0.075212 | 2.425873
18 | Quartic-2 B | 0.124879 0.154617 | 2.114397

Table C.6 Avg [, Relative Error Norms for Kernel Test 3
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Tables C.7 and C.8 show the {; and /3 results from Test 3 Step function only

for the truncated 1-sided kernels.

[# | Name | Type | Adaptive | Backward | Forward
1 | Gaussian B 35.770172 | 25.346821 | 50.589466
2 | Wy B-Spline B 39.016865 | 28.821920 | 57.531830
3 | Cosine B | 36.007061 | 26.473532 | 52.838074
4 | Exponential H | 27.388069 | 17.761250 | 35.458717
5 | kK — 2 Exponential H 33.400810 | 25.695364 | 51.122055
6 [1/X,2 H 36.192120 | 26.940407 | 53.760464
7 11/X.4 H 35.764687 | 26.554712 | 52.992195
8 | 1/X,10 H 35.311211 | 26.171162 | 52.227161
9 | -X? H 61.610802 | 25.816395 | 123.611145
10| —x—e~* P 26.363857 | 19.140060 | 38.176891
11 |4 - X? P 24.932720 | 18.043724 | 35.980412
12 (8- X3 P |22.735289 | 16.362419 | 32.602768
13 | x — 2 Gaussian B | 42.133472 | 31.433580 | 62.741013
14 | L Gaussian B 38.926849 | 28.889837 | 57.663372
15 | Q Gaussian B | 37.972710 | 28.026678 | 55.942650
16 | T Gaussian B 35.350651 { 25.005360 | 51.903835
17 | Quartic-1 B 36.938557 | 27.236271 | 54.361706
18 | Quartic-2 B 27.964264 | 20.365017 | 40.628468
Table C.7 Avg I, Error Norms for Test 3, Step Function, Truncated Kernels
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| # | Name | Type | Adaptive | Backward | Forward ||
1 | Gaussian B 35.266060 | 24.567732 | 48.868141
2 | W, B-Spline B 38.498535 | 28.191751 | 56.090488
3 | Cosine B 35.026104 | 25.532019 | 50.773285
4 | Exponential H |27.969044 | 17.559801 | 34.975266
5 | k-2 Exponential | H | 46.150829 | 34.892223 | 69.564873
6 |1/X,2 H |37.664139 | 27.824171 | 55.395535
T 1/X, 4 H | 36.671600 [ 27.022966 | 53.790264
8 |1/X,10 H | 35.873276 | 26.387548 | 52.517906
9 [ -X? H 71.473541 | 25.868845 | 121.344543
10| —z—€% P | 25.929104 | 18.698484 | 37.138481
11 |4 - X? P | 24.715145 [ 17.764969 | 35.265335
12]18-X° P ]23.103941 { 16.503397 | 32.725090
13 | kK — 2 Gaussian B | 43.917507 | 32.446465 | 64.604774
14 | L Gaussian B 39.424267 | 29.015673 | 57.754101
15 | Q Gaussian B | 37.427788 | 27.388683 | 54.491085
16 | T Gaussian B | 34.604794 | 25.248262 | 50.220360
17 | Quartic-1 B | 36.296047 | 26.537476 | 52.789551
18 | Quartic-2 B | 26.995367 | 19.515217 | 38.753639

Table C.8 Avg I, Error Norms for Test 3, Stép Function, Truncated Kernels
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Tables C.9 and C.10 show the /; and [, results from Test 3 Step function only

for the condensed 1-sided kernels.

[ # | Name | Type | Adaptive | Backward | Forward
1 | Gaussian B 4.627463 4.171862 4.224389
2 | W4 B-Spline B | 6.600931 6.091682 6.125278
3 | Cosine B | 3.383625 3.269625 3.266023
4 | Exponential H 11.922575 | 8.278474 8.459723
5 | & — 2 Exponential | H 138.913773 | 125.496758 | 125.621735
6 |1/X,2 H |29.136833 | 26.358891 | 26.408539
T 11/X,4 H |23.274830 | 21.076603 | 21.123383
8 11/X,10 H 19.664471 | 17.825077 | 17.871046
9 | -X? H |57.373978 [ 61.558681 | 37.497616
10| -z —¢7* P |5.907393 5.799411 5.962747
11 [4-X? P 7.691435 7.576866 7.741799
128 - X° | 11.094380 | 10.981340 | 11.147852
13 | kK — 2 Gaussian B 16.707014 | 15.135881 | 15.176677
14 | L Gaussian B 15.705833 | 14.245801 | 14.293818
15 | Q Gaussian B | 5.923904 5.493348 5.530460
16 | T Gaussian B | 3.884053 3.635837 3.696250
17 | Quartic-1 B | 5.542394 5.146575 5.173334
18 | Quartic-2 B | 4.433723 4.227802 4.134763

Table C.9 Avg l; Error Norms for Test 3, Step Function, Condensed Kernels
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# | Name Type | Adaptive | Backward | Forward
1 | Gaussian B |6.777384 6.314503 6.375536
2 | Wy B-Spline B |9.376309 8.873537 8.860847
3 | Cosine B |5.213538 5.012552 4.963362
4 | Exponential H 12.061853 | 9.487526 9.572164
5 | x—2 Exponential | H 164.067596 | 153.782288 | 153.790833
6 (1/X,2 H |31.930933 | 29.944818 | 29.940264
T 11/X,4 H | 25.548899 | 23.976448 | 23.968622
8 {1/X.10 H | 21.664978 | 20.347097 | 20.336092
9 | -X? H |56.435982 | 60.251125 | 37.391243
10| ~x —e~° P | 6.452044 6.459867 6.633987
11 [4- X* P 8.589965 8.557788 8.728765
128 - X3 P 12.505659 | 12.429585 | 12.599248
13 | £k — 2 Gaussian B 21.589687 | 20.246670 | 20.248573
14 | L Gaussian B 17.908546 | 16.816137 | 16.813013
15 | Q Gaussian B | 8.417760 7.980781 7.969928
16 { T Gaussian B | 5.465341 5.229952 5.226177
17 | Quartic-1 B 7.826464 7.436666 7.407992
18 | Quartic-2 B | 5.515248 5.174659 5.055277
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C.5 Shock Tube Results for Kernels

The data shown in Table C.11 shows !/, and /; norms for selected kernels applied

to the Riemann Shock Tube Problem.

| Kernel | Cycle | Norm | Density | Velocity [ Energy | Pressure ||
2 625 1 .119143E-01 | .351724E-01 | .860845E-02 | .901961E-02
2 625 2 .193286E-01 | .775102E-01 | .336564E-01 | .146037E-01
2 617 1 .123399E-01 | .366288E-01 | .887474E-02 | .944356E-02
2 617 2 .199570E-01 | .750054E-01 | .331870E-01 | .160789E-01
3 634 1 .103854E-01 | .344368E-01 | .912052E-02 | .821342E-02
3 634 2 .196988E-01 | .784168E-01 | .341025E-01 | .161296E-01
9 Abort
10 Abort
12 Abort
15 606 1 .879550E-02 | .342297E-01 | .854017E-02 | .593626E-02
15 606 2 .188066E-01 | .796244E-01 | .341390E-01 | .137457E-01
16 646 1 .103807E-01 | .365653E-01 | .873685E-02 | .753665E-02
16 646 2 .194426E-01 | .814887E-01 | .342294E-01 | .144174E-01
17 611 1 .109943E-01 | .353594E-01 | .856442E-02 | .833809E-(2
17 611 2 .190161E-01 | .763600E-01 | .332472E-01 | .145838E-01 |
18 Abort

Table C.11 Relative Error Norms for Selected Kernels
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Appendiz D. HYBRID CALCULATIONS

D.1 Introduction

This appendix contains the test results from the hybrid methods discussed in
Chapter VIII applied to Riemann Shock Tube Problem. For each method a table
of the relative error norms is included. The formulas for these norms are shown in
equations (8.10) - (8.12). As described earlier the norms are calculated based on
either 1000 evenly spaced points or the particles as the points for a comparison. On
each of the plots, the analytic solution is shown. In the tables to follow, the test
column key is: N - Normal 600 particles, = - Extra 816 particles, H - Variable &, or

A - Always average.

D.2 Baseline

|| Points | Test | Norm { Density | Velocity | Energy | Pressure
1000 N 1 .306879D-01 | .138161D+00 | .174816D-01 | .349231D-01
1000 N 2 .508795D-01 | .174294D+00 | .514047D-01 | .543121D-01
1000 N oo | .181351D+00 | .768014D+00 | .405288D+00 | .180250D+00
part N 1 .302635D-01 | .130508D+00 | .229058D-01 | .326225D-01
part N 2 .784147D-01 | .166399D+00 | .791777D-01 | .774897D-01
part N oo | .100000D+01 | .751902D+00 | .876105D+00 | .100000D+01
1000 E 1 .572092D-02 | .358461D-01 | .431351D-02 | .691356D-02
1000 E 2 .133659D-01 | .907235D-01 | .200159D-01 | .164215D-01
1000 E oo | .724986D-01 | .652194D+00 | .290391D+00 | .100370D+00
part E 1 J775876D-02 | .361730D-01 | .661709D-02 | .928497D-02
part E 2 .542997D-01 | .102223D+00 | .433878D-01 | .561397D-01
part E 00 .100000D+01 | .630452D+00 | .876105D+00 | .100000D+-01

Table D.1 Relative Error Norms for Baseline
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D.3 Method 2

ﬂ Points | Test | Norm l Density l\/elocity | Energy ﬁ’ressure H
1000 N 1 272889E-01 | .191943E+00 | .244260E-01 | .342833E-01
1000 N 2 500100E-01 | .322617E+00 | .709577E-01 | .626991E-01
1000 N > | .140617E+00 | .100102E+401 | .308587E+00 | .203194E+00
part N 1 .264217E-01 | .183844E+00 | .330583E-01 | .332332E-01
part N 2 .759511E-01 | .306687TE+00 | .918251E-01 | .846328E-01
part N oo | .100000E+01 | .100102E+01 | .876105E+00 | .100000E+01
1000 E 1 .126022E-01 | .811757E-01 | .166214E-01 | .128609E-01
1000 E 2 .305912E-01 | .236765E+00 | .616357E-01 | .386207E-01
1000 E oc | .140603E+00 | .100101E+01 | .313184E+00 | .203176E+00
part E 1 .199853E-01 | .670681E-01 | .312255E-01 | .143112E-01
part E 2 650136E-01 | .217061E+00 | .905540E-01 | .657909E-01
part E oc | .100000E+401 | .100141E+4-01 | .876105E+00 | .100000E+01
1000 H 1 .129561E-01 | .102615E+00 | .219245E-01 | .169354E-01
1000 H 2 .334514E-01 | .266829E+4-00 | .729890E-01 | .431817E-01
1000 H oo | .141297E+400 | .100476E+01 | .353619E+00 | .205409E+00
part H 1 J191410E-01 | .927628E-01 | .359943E-01 | .203850E-01
part H 2 J723576E-01 | .254639E+00 | .102423E+00 | .753285E-01
part H oo | .100000E+01 | .100485E+01 | .876105E+00 | .100000E+-01

Table D.2 Relative Error Norms for Method 2
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D.4 Methods 4, 6. and 8

| Points | Test | Norm | Density | Velocity { Energy | Pressure |
1000 N 1 .283069D-01 | .205381D+00 | .251389D-01 | .3479389D-01
1000 N 2 .326087D-01 | .361139D+00 | .745590D-01 | .683318D-01
1000 N 20 .140611D+00 | .100102D+01 | .310291D+00 | .203196D+00
part N 1 .275758D-01 | .195260D+00 | .294965D-01 | .290924D-01
part N 2 .780543D-01 | .345100D+00 | .392641D-01 | .869534D-01
part N o) .100000D+01 | .100112D+01 | .876105D+00 | .100000D+01
1000 A 1 .303552D-01 | .191807D+00 | .370719D-01 | .406536D-01
1000 A 2 .502913D-01 | .361574D+00 | .981243D-01 | .691604D-01
1000 A o0 .141798D+00 | .101271D+01 | .367483D+00 | .207433D+00
part A 1 .327297D-01 | .189121D+00 | .530991D-01 | .402106D-01
part A 2 .784696D-01 | .347643D400 | .125065D+00 | .897604D-01
part A 00 .100000D+01 | .101320D+01 | .876105D+00 | .100000D+01
1000 E 1 .162784D-01 | .137771D+00 | .175494D-01 | .194683D-01
1000 E 2 .362037D-01 | .309025D+00 | .634948D-01 | .485241D-01
1000 E 0o .140609D+900 | .100131D+01 | .311787D+00 | .203172D+00
part E 1 .221256D-01 | .118829D+00 | .255566D-01 | .217069D-01
part E 2 .664389D-01 | .284307D+00 | .806376D-01 | .719843D-01
part E o) .100000D+01 | .100140D+01 | .876105D+00 | .100000D+01

Table D.3 Relative Error Norms for Method 4

[ Points | Test | Norm | Density | Velocity | Energy | Pressure |
1000 N 1 .320046D-01 | .244760D+00 | .280627D-01 | .392781D-01
1000 N 2 .376079D-01 | .406452D+00 | .810759D-01 | .749086D-01
1000 N 00 .140631D+00 | .100213D+01 | .312249D+00 | .203236D+00
part N 1 .314685D-01 | .232772D+00 | .326706D-01 | .333819D-01
part N 2 .810679D-01 | .388575D+00 | .949093D-01 | .916139D-01
part N 00 .100000D+01 | .100259D+01 | .876105D+00 | .100000D+-01
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Table D.4 Relative Error Norms for Method 6




u Points l Test | Norm | Density TVelocity LEnergy | Pressure 1]
1000 N 1 .280756E-01 | .193621E+00 | .238426E-01 | .349017E-01
1000 N 2 .520783E-01 | .336727TE+00 | .690458E-01 | .661071E-01
1000 N x | .140695E4+00 | .100210E+01 | .313196E+00 | .203416E+00
part N 1 .262176E-01 | .181903E+00 | .285280E-01 | .296929E-01
part N 2 .T69434E-01 | .319691E+00 | .844894E-01 | .850875E-01
part N oo | .100000E+01 | .100247E+01 | .876105E+00 | .100000E+01
1000 E 1 J123757E-01 | .950932E-01 | .139468E-01 | .138385E-01
1000 E 2 .312280E-01 | .264959E+00 | .570272E-01 | .411868E-01
1600 E oo | .140709E+00 | .100424E+-01 | .316054E+00 | .203306E+00
part E 1 .190226E-01 | .815595E-01 | .220675E-01 | .164351E-01
part E 2 .639188E-01 | .242847E+00 | .759615E-01 | .672266E-01
part E oo | .100000E+01 | .100534E+01 | .876105E+00 | .100000E+01
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Table D.5 Relative Error Norms for Method 8
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Figure D.11 Shock Tube Results - Method 4
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Figure D.17 Shock Tube Results - Method 6
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Figure D.18 Shock Tube Results - Method 6
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Figure D.19 Shock Tube Results - Method 8
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D.5 Method 12

[ Points | Test | Norm | Density | Velocity | Energy | Pressure ||
1000 N 1 .325480E-01 158504 E+00 | .263872E-01 .420911E-01
1000 N 2 ST1T15E-01 .172209E4-00 | .601891E-01 .697691E-01
1000 N 20 .184923E+00 | .821038E+00 | .276056E+4-00 | .182059E+00
part N 1 .348307E-01 .159281E4-00 | .307077E-01 .411532E-01
part N 2 .839684E-01 | .172590E+00 | .7883086E-01 | .870456E-01
part N (o) .100000E+01 | .775753E+00 | .8376105E+400 | .100000E+01
1000 | E | 1 | .222823E-01 | .l06705E+00 | .236942E-01 | .342920E.01
1000 | E | 2 | .392454E-01 | .113640E+00 | .500963E-01 | .533369E-01
1000 | E | oo |.165961E+00 | 450716E+00 | .251182E+00 | .129882E+00
part | E | 1 | .272534E-01 | .110921E+00 | .278851E-01 | .358040E-01
partt | E | 2 | .609270E-01 | .118027E+00 | .686534E-01 | .732711E-01
part E oo .100000E+01 [ .520853E+00 | .876105E-+00 | .100000E4-01
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Table D.6 Relative Error Norms for Method 12




Density vs. X

Calculation —- Analytic

1.0
7 NP =600
0.75
2 1 Time =0.10
[72}
& ] lter = 336
o 0.5
. k
0.25 CIT:
i i
T T T T T T T T 7T 7T Method_5
0.0 0.25 0.5 0.75 1.0
X-Coordinates
Velocity vs. X
Calculation ——— Analytic
0757 NP = 600
2 i Time =0.10
g 0.5
] ] Iter = 336
> —
.
0.25-
j
0. 0T T T T T T T T T Method_5
0.0 0.25 0.5 0.75 1.0

X-Coordinates

Figure D.23 Shock Tube Results - Method 12
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D.6 Method 20

| Points | Test | Norm | Density | Velocity | Energy | Pressure |
1000 N 1 27T0497E-01 | .124528E+00 | .310869E-01 | .300437E-01
1000 N 2 .465410E-01 | .140433E+00 | .816390E-01 | .597662E-01
1000 N o0 .132384E+00 | .480361E+00 | .494463E+00 | .299863E+00
part N 1 .276355E-01 | .110387E+00 | .418932E-01 | .219570E-01
part N 2 .T48261E-01 | .122587E+00 | .102776E+00 | .760831E-01
part N 20 .100000E+01 | .409887E+00 | .876105E+00 | .100000E+01
1000 E 1 .101494E-01 | .572613E-01 | .167811E-01 | .117138E-01
1000 E 2 .198756E-01 | .998780E-01 | .500583E-01 | .233546E-01
1000 E o0 .119849E+00 | .847343E+00 | .296220E+00 | .186041E+00
part E 1 .151330E-01 | .548147E-01 | .288455E-01 | .152906E-01
part E 2 .578502E-01 | .956049E-01 | .752466E-01 | .586174E-01
part E o0 .100000E+-01 | .807053E+400 { .876105E+00 | .100000E+01
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Appendizr E. SOFTWARFE

This appendix briefly describes the software that was use in this dissertation.

It is divided into three categories: Kernels, SPH. and Plotting.

Kernels. The computational work in the Kernel Chapter (Chapter VI) and

corresponding appendix is performed mostly using the Mathematica package. It is
used to normalize the kernels, plot the measures of merit, and obtain the norms.
Samples of the code are given in Figures E.1 - E.2. The work on the test problems

(called test 3) is done using a Fortran program. That program is not presented here.

SPH. The primary SPH code used was originally developed at the Phillips
Laboratory by Captain David Amdahl and is known as DOG. It is based on his
own work and that found in the Phillips Laboratory’s MAGI SPH code. MAGI has
one, two, and three dimensional capabilities and rany ‘bells and whistles’ while the
Amdahl DOG code is only one dimensional with a simpler implementation. Both
codes are written in Fortran and can run on almost any workstation. Extensive
modifications were made to almost all parts of the DOG code (except the neighbor
search and list algorithms) for this dissertation. These changes make the code more
useful in the research, change the time scheme, make the entire code double precision,
and correct problems with the code. Of course, additional modifications were made
when testing the different hybrid schemes and stabilizing techniques. To list the
code here would take up about 50 pages and not be overly useful to the reader; so

it was not done.

In add:tion to the mnain Fortran code, a C based graphics post-processor was
used that was also originally developed by Capt Amdahl. Some modifications were
made including additional options, but all the changes were minor. It is designed
as an X-Windows viewing package, but has Postscript output capabilities. Is uses a
commercially available graphics package known as UNIRAS. Using graphics primi-

tives from a package makes coding graphics easy, but unfortunately this makes the
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myabs[x_] := If[x<0,-x,x];
(* Gaussian Kernel =)

kilu_]l:= 1/Pi~(1/2)*If[Abs[u]<=3,Exp[-u~2],0];
dk1[u_] :=Evaluate[D[k1[u],ul];

(* W-4 B Spline Kernel *)

k2(u_]:= 2/3*If[Abs[ul<=1,1-3/2*u~2+3/4*nyabs[u] "3,
If [Abs[ul<=2,1/4*(2-myabs[ul)~3,01];
dk2[u_] :=Evaluate[D[k2[u] ,ul];

(* COS Kernel =*)

k3[u_]:= If[Abs[u]<=2,1/(8/3+8/(Pi~2))*(1-u~2/4)*(1+Cos[Pi*u/2]), 0];
dk3[u_] :=Evaluate[D[k3[u] ,ul];

(*# Mixed Plots *)

pima=Plot [{k1[v],k2([v],k3[v]},{v,-2.0,2.0},PlotRange->All,
PlotStyle->{{Thickness[.004] ,Dashing[{0.05,0.05}]},
{Thickness[.002] ,Dashing[{0.03,0.03}1},
{Thickness[.001] ,Dashing[{0.01,0.01}]}},AxesLabel->{"u","K(u)"}]1;
plma2=Show[plma,Graphics[Text["(1)",{1.9,.04}],Text{"(2)",{.4,.62}],
Text["(3)",{.18,.59}]1];

plmb=Plot [{dk1[v],dk2[v],dk3[v]},{v,-2.0,2.0},PlotRange->All,
PlotStyle-){{Thickness [.004] ,Dashing [{0.05,0.05}]1},
{Thickness{.002] ,Dashing[{0.03,0.03}]},
{Thickness[.001] ,Dashing[{0.01,0.01}]}},AxesLabel->{"u","K’ (u)"}];
plmb2=Show[plmb,Graphics[Text["(1)",{1.85,-.15}],
Text["(2)",{1.1,-.6}],Text["(3)",{1.55,-.32}]111;

plk2a=Plot[{1,-2*dxh*Sum[1*dxh*dk2[1*dxh],{1,1,20}]1},{dxh,1/10,2},
PlotRange~>All1,PlotStyle->{{Thickness[.004] ,Dashing[{0.05,0.05}]},
{Thickness[.001] ,Dashing[{0.01,0.01}]}},AxesLabel->{"dx/h","S"},
PlotLabel->"B Spline Kernel"];

Figure E.1 Mathematica Code for Kernels Chapter, part 1
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(* Error Norms x)

11k2=N[Sum[Abs[~2*(.2+n/100) *Sum[1*(.2+n/100)*dk2[1*(.2+n/100)],
{1,1,200/(20+n)}]-1],{n,1,100}1/100] ;

12k2=Sqrt [N[Sum[(-2%(.2+n/100) *Sum[1*(.2+n/100)*dk2[1*(.2+n/100)],
{1,1,200/(20+n)}1-1)"2,{n,1,100}1/1001];

Figure E.2 Mathematica Code for Kernels Chapter, part 2

post-processor not easily portable. In fact, I must still use the product through the
internet using the Phillips Laboratory’s IBM Risc 6000 workstations. Developing a
post-processor that uses X-Windows commands directly should be accomplished. In
addition, a graphics capability intertwined with the computational capability would

be very useful.

Plotting. In addition to the computational work in the Kernels Chapter and
the SPH plots, I used the XFIG package, Mathematica, MathCAD, Excel, Drawing
Gallery, and GNUPIlot to produce the remaining plots in this work. This was all

fairly minor work and no code is included.

Availability. The software discussed above is all available from the author.
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